

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

From BIM to VR

-The design and development of BIMXplorer

MIKAEL JOHANSSON

Department of Civil and Environmental Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2016

ii

From BIM to VR
-The design and development of BIMXplorer

MIKAEL JOHANSSON

ISBN 978-91-7597-449-1

© MIKAEL JOHANSSON, 2016

Doktorsavhandlingar vid Chalmers tekniska högskola

Ny serie nr 4130

ISSN 0346-718X

Department of Civil and Environmental Engineering

Chalmers University of Technology

SE-412 96 Gothenburg

Sweden

Telephone: +46 (0)31-772 1000

Chalmers Reproservice

Gothenburg, Sweden 2016

iii

From BIM to VR - The design and development of BIMXplorer

MIKAEL JOHANSSON

Department of Civil and Environmental Engineering

Chalmers University of Technology

Abstract

The architecture, engineering and construction (AEC) industries are currently undergoing a

change from a drawing-based form of information exchange to a model-based. Using the

concept of Building Information Models (BIM), the content produced by architects and

designers has evolved from traditional 2D-drawings to object-oriented 3D-models embedded

with information to describe any building in detail. This, in turn, has opened up new

possibilities of using real-time visualization and Virtual Reality (VR) as a tool for

communication and understanding during the design process. However, as primarily created

to describe a complete building in detail, many 3D dataset extracted from BIMs are too large

and complex in order to be directly used as real-time visualization models. Because of this, it

is still difficult to integrate VR and real-time visualizations as a commonly used tool during

the design process. The recent introduction of a new generation of Head-Mounted Displays

(HMD) has also made the situation even more challenging. Although these new types of VR

devices offer huge potential in terms of realism, sense of scale and overall suitability for

design and decision-making tasks, they are also far more demanding when it comes to real-

time rendering performance.

In order to address the current situation this thesis contributes with the design and evaluation

of a new software application that provides a simple interface from BIM to VR. Following a

design science research approach this application has been developed in order to fulfil a set of

requirements that has been identified as important in order for VR and real-time visualization

to become an everyday used tool for design and communication during the building design

process. Along that path, three new technical solutions have been developed:

• An efficient cells- and portals culling system automatically realized from BIM-data.

• An efficient approach for integrating occlusion culling and hardware-accelerated

geometry instancing.

• An efficient single-pass stereo rendering technique.

The final system – BIMXplorer – has been evaluated using several BIMs received from real-

world projects. Regarding rendering performance, navigation interface and the ability to

support fast design iterations, it has been shown to have all the needed properties in order to

function well in practice. To some extent this can also be considered formally validated, as the

system is already in active use within both industry and education.

Key words: Building Information Modeling, BIM, Virtual Reality (VR), Real-time rendering,

Head-mounted display (HMD).

iv

v

Acknowledgements

First of all, I would like to thank the people that were with me at The Visualization Studio at

Chalmers Lindholmen – the place where all of this work really started! Claes and Börje – I

hope that you are enjoying your time in retirement! Special thanks go to Mattias Roupé, my

friend and colleague with whom I have had very close collaboration during this entire project.

We have had a lot of fun over the years and I especially value your way of always seeing the

potential and opportunities instead of problems in any given situation.

I would also like to thank all my other colleagues at the Construction Management

department for their support, especially Mikael Viklund Tallgren and my main supervisor, the

amazing Petra Bosch. Huge thanks also to my examiner Christian Koch as well as my

academic writing coach, Christine Räisänen.

I would also like to acknowledge my former examiner, the late Professor Per-Erik Josephson,

who made it possible for me to become a PhD student in the first place.

Last, but certainly not least, I would like to thank my family and friends for their company

and support, especially the three most important people in my life, Jessica, Noah and Esther –

thank you for all the love and happiness you give me every day!

Göteborg, August 2016

Mikael Johansson

vi

vii

Appended papers

Paper I:

“Efficient Real-Time Rendering of Building Information Models”

Johansson, Mikael; Roupé, Mattias. In Proceedings of the 2009 international conference on

computer graphics and virtual reality (CGVR09), July 13-16, 2009, Las Vegas, Nevada,

USA, Pages 97-103.

Paper II:

“Real-time visualization of Building Information Models (BIM)”

Johansson, Mikael; Roupé, Mattias; Bosch-Sijtsema, Petra. Automation in Construction, Vol.

54 (2015), June 2015, Pages 69-82.

Paper III:

“Integrating Occlusion Culling and Hardware Instancing for Efficient Real-Time

Rendering of Building Information Models”

Johansson, Mikael. In GRAPP 2013: Proceedings of the International Conference on

Computer Graphics Theory and Applications, Barcelona, Spain, 21-24 February, 2013, Pages

197-206.

Paper IV:

“From BIM to VR – Integrating immersive visualizations in the current design process”

Johansson, Mikael; Roupé, Mattias; Viklund Tallgren, Mikael. In Fusion - Proceedings of the

32nd eCAADe Conference - Volume 2 (eCAADe 2014), 10-12 September, 2014, Newcastle

upon Tyne, England, Pages 261-269.

Paper V:

“Efficient Stereoscopic Rendering of Building Information Models (BIM)”

Johansson, Mikael. Journal of Computer Graphics Techniques (JCGT), Vol. 5, No. 3, 2016,

Pages 1-17.

viii

ix

Additional publications

 “Immersive visualisation of building information models: Usage and future possibilities

during design and construction”

Roupé, Mattias; Johansson, Mikael; Viklund Tallgren, Mikael; Jörnebrant, Fredrik; Tomsa,

Petru Andrei. In Proceedings of the 21st International Conference on Computer-Aided

Architectural Design Research in Asia (CAADRIA 2016), 30 March-2 April, 2016,

Melbourne, Australia, Pages 673-682.

 “A BIM-supported framework for enhancing joint planning in construction”

Viklund Tallgren, Mikael; Roupé, Mattias; Johansson, Mikael; Andersson, Roger. In

Proceedings of the 32nd CIB W78 Conference 2015, October 27th-29th, 2015, Eindhoven,

The Netherlands, Pages 696-705.

“An empowered collaborative planning method in a Swedish construction company - A

case study”

Viklund Tallgren, Mikael; Roupé, Mattias; Johansson, Mikael. In Proceedings 31st Annual

ARCOM Conference, Lincoln, 2015, Pages 793-802.

“Interactive navigation interface for Virtual Reality using the human body”

Roupé, Mattias; Bosch-Sijtsema, Petra; Johansson, Mikael. Computers, Environment and

Urban Systems, Vol. 43, 2015, Pages 42-50.

 “Real-Time Rendering of large Building Information Models - Current state vs. state-of-

the-art”

Johansson, Mikael; Roupé, Mattias. In Proceedings of the 17th International Conference on

Computer-Aided Architectural Design Research in Asia (CAADRIA 2012), 25-28 April, 2012,

Chennai, India, Pages 647-656.

“Using the human body as an interactive interface for navigation in VR models”

Roupé, Mattias; Johansson, Mikael. In Proceedings of the 17th International Conference on

Computer-Aided Architectural Design Research in Asia (CAADRIA 2012), 25-28 April, 2012,

Chennai, India, Pages 79-88.

“3D-City Modeling: A Semi-automatic Framework for Integrating Different Terrain

Models”

Roupé, Mattias; Johansson, Mikael. Advances in Visual Computing, 7th International

Symposium, ISVC 2011, September 26-28, 2011, Las Vegas, NV, USA, Pages 725-734.

x

 “Towards a Framework for Efficient Use of Virtual Reality in Urban Planning and

Building Design”

Johansson, Mikael. Thesis for licentiate degree, Chalmers University of Technology,

Gothenburg, Sweden, 2010.

“How can GIS and BIM be integrated?”

Johansson, Mikael; Roupé, Mattias. Poster, The 15th International Conference on Computer-

Aided Architectural Design Research in Asia (CAADRIA 2010), 7-10 April, 2010, Hong

Kong.

“Supporting 3D City Modelling, Collaboration and Maintenance through an Open-Source

Revision Control System”

Roupé, Mattias; Johansson, Mikael. In Proceedings of the 15th International Conference on

Computer-Aided Architectural Design Research in Asia (CAADRIA 2010), 7-10 April, 2010,

Hong Kong, Pages 347-356.

“Visual quality of the ground in 3D models: using color-coded images to blend aerial

photos with tiled detail-textures”

Roupé, Mattias; Johansson, Mikael. In Proceedings of the 6th International Conference on

Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa (Afrigraph 2009),

February 4-6, 2009, Pretoria, South Africa, Pages 73-79.

“Virtual Reality Supporting Environmental Planning Processes: A Case Study of the City

Library in Gothenburg”

Suneson, Kaj; Allwood, Carl Martin; Heldal, Ilona; Paulin, Dan; Roupé, Mattias; Johansson,

Mikael; Westerdahl, Börje. Knowledge-Based Intelligent Information and Engineering

Systems, 12th International Conference, KES 2008, Zagreb, Croatia, September 3-5, 2008,

Pages 481-490.

“Virtual Reality As a New Tool in the City Planning Process”

Suneson, Kaj; Allwood, Carl Martin; Paulin, Dan; Heldal, Ilona; Roupé, Mattias; Johansson,

Mikael; Westerdahl, Börje. Tsinghua Science and Technology, Vol. 13, No. S1, 2008, Pages

255-260.

“User’ evaluations of a virtual reality architectural model compared with the experience of

the completed building”

Westerdahl, Börje; Suneson, Kaj; Wernemyr, Claes; Roupé, Mattias; Johansson, Mikael;

Allwood, Carl Martin. Automation in Construction, Vol. 15, Iss. 2, 2006, Pages 150-165.

xi

“Building Information Modelling for Visualisation in AEC Education”

Horne, Margaret; Roupé, Mattias; Johansson, Mikael. The 5th conference of Construction

Applications of Virtual Reality (CONVR 2005), 12-13 September, 2005, Durham, United

Kingdom.

“From CAD to VR - Implementations for Urban Planning and Building Design”

Johansson, Mikael; Roupé, Mattias. Digital Design: The Quest for New Paradigms (23nd

eCAADe Conference Proceedings), 21-24 September, 2005, Lisbon, Portugal, Pages 399-405.

“From CAD to VR – focusing on urban planning and building design”

Roupé, Mattias; Johansson, Mikael. AVR III, Conference and Workshop on Applied Virtual

Reality and Open Source VR programming, Gothenburg, Sweden, May 27-28, 2004.

xii

xiii

Table of contents

1 Introduction ... 1

1.1 Aim and objectives .. 2

2 Background and related work ... 5

2.1 Definition of Virtual Reality (VR) ... 5

2.2 Real-time rendering .. 5

2.3 Display systems ... 6

2.4 BIM and real-time visualization .. 8

2.5 Frame rate and interactivity ... 11

2.6 Rendering performance and acceleration techniques.. 12

2.6.1 Pipeline optimizations ... 14

2.6.2 Level-of-detail (LOD) .. 14

2.6.3 Visibility culling .. 15

3 Research approach .. 19

3.1 Requirements .. 23

4 Summary of the papers ... 25

4.1 Paper I ... 25

4.2 Paper II .. 25

4.3 Paper III ... 26

4.4 Paper IV ... 27

4.5 Paper V .. 27

5 BIMXplorer v1.0 ... 29

6 Discussion .. 33

6.1 Current state of BIM visualization ... 33

6.2 Efficient real-time rendering of BIMs .. 35

6.3 Integration of VR within the AEC field .. 37

7 Conclusions and future work ... 39

References ... 41

xiv

1

1 Introduction

Real-time visualization and Virtual Reality (VR), have many applications within the

Architecture, Engineering and Construction (AEC) industries (Bouchlaghem et al., 2005;

Woksepp and Olofsson; Greenwood et al., 2008). With the ability to navigate freely through

3D scenes from a first-person perspective, it is possible to present and communicate ideas

regarding future projects in a way that facilitates understanding among all involved parties,

despite their background or professional expertise (Kjems, 2005; Westerdahl et al., 2006). For

people with limited experience of interpreting traditional design documents, such as 2D

drawings, the technology offers a representation that avoids misunderstanding and allows for

a thorough apprehension of any type of building or facility (Mobach, 2008).

However, despite all the documented benefits that VR technology offers, it is still not used as

an everyday tool during the design process. Instead, its use remains restricted to certain

projects of high importance (Bullinger et al., 2010; Liu at al., 2014). In the past, this was

mainly due to lack of affordable hardware offering sufficient computing power, but also the

fact that the actual design was almost always performed in 2D. As a consequence, any use of

VR required the time-consuming creation of a separate 3D model (Westerdahl et al., 2006;

Sunesson et al. 2008), using the original design documents as a reference. As this was

typically done by someone else than the architect, it severely affected a natural integration of

the technology. Even when 3D CAD data was available from the actual design, it still had to

be converted to a representation suitable for real-time visualization by optimizing it and

adding material properties, such as textures.

Nevertheless, with the introduction of Building Information Models (BIM) within the AEC

field new possibilities have emerged. Using modern modelling tools, such as Autodesk Revit

or ArchiCad, the content produced by architects and designers has evolved from traditional

2D-plans and elevations to object-oriented 3D-models embedded with information to

describe any building or facility in detail (Eastman et al., 2011). In theory, BIM then supports

an easier and more natural integration of VR during the design process. As 3D data is

available from the actual design work, there is no longer a need to create a separate 3D-model

for the sole purpose of visualization.

However, as primarily created to describe a complete building in detail, many 3D dataset

extracted from BIMs are too large and complex in order to be directly used as real-time

visualization models (Dvorak et al., 2005; Jongeling et al., 2007; Pelosi, 2010; Steel et al.,

2012; Dalton and Parfitt, 2013; Shi et al., 2015). To support interactive, real-time navigation

the dataset often has to be significantly reduced or otherwise optimized – a process that may

involve hours or even days to perform (Dubler et al., 2010; Liu at al., 2014). With current

solutions users and stakeholder thus have to either resort to time-consuming pre-processing

steps or accept that the visualization may not always be considered fully interactive or free of

visual artefacts, i.e. errors. Because of this, it is still difficult to integrate VR as a commonly

used tool for design and communication. Although visualizing large amounts of 3D-data in

2

real-time is an active research topic by itself (Yoon et al., 2008), there has been surprisingly

little attention given to the specific case of visualizing large BIMs in real-time.

With the recent introduction of a new type of consumer-directed Head Mounted Displays

(HMD), such as the Oculus Rift, the problem of managing large BIMs interactively has

become even more relevant to solve. Although these new types of VR devices offer huge

potential in terms of realism, sense of scale and overall suitability for design and decision-

making tasks, they are also far more demanding when it comes to real-time rendering

performance. Not only do they require a 3D scene to be rendered twice in order to produce the

stereoscopic effect, but they also require a much higher update rate. Compared to typical

desktop VR applications, the performance requirements have essentially increased three-

folded, making an existing problem become far worse. Fortunately, this thesis has only one

real purpose – to deliver a solution to this problem.

1.1 Aim and objectives
The main aim of the work presented in this thesis is to develop a software application that will

allow VR to become an everyday used tool for design and communication during the building

design process. As already outlined, one of the biggest obstacle for this to be realized today

lies in the difficulties to directly – i.e. without any time-consuming pre-process – visualize

BIMs in real-time. The main objectives are therefore to develop techniques and algorithms

that allow large and complex BIMs to be directly visualized in real-time.

To better guide this process, the following research questions are investigated and considered:

RQ1: What is the current state when considering real-time visualization of BIMs?

The problem of visualizing BIMs has been highlighted in earlier studies, but it hasn’t really

been thoroughly investigated. The current literature contains many examples where problems

of using large BIMs for visualization purposes have been expressed but often the exact

details, such as what type of models, software and hardware that has been used are simply

omitted. Similarly, this question also relates to the type of models that can be expected in real-

world cases.

RQ2: What is a suitable acceleration technique for typical 3D building models?

There are a number of existing techniques and algorithms that can be utilized in order to

accelerate real-time rendering. These have all strengths and weaknesses and a suitable choice

is highly dependent on the type of 3D environment that it should be applied to. For instance, a

vast, open landscape seen in a flight simulator is very different from a detailed city

environment seen from the ground level when it comes to performance optimization. When

considering buildings in general – which BIMs typically represent – they often feature a lot of

occlusion, i.e. enclosed regions. Can we take advantage of this in an efficient manner?

3

RQ3: How can we take advantage of BIM-data in order to accelerate rendering?

When considering existing acceleration techniques they have primarily been developed with

general 3D-models in mind, i.e. as received from CAD or DCC tools. As such, they become

inherently limited by the lack of information beyond pure geometrical data. BIMs, on the

other hand, contain much more information, i.e. metadata, such as detailed object properties

as well as any relations to other objects. Can this additional information be utilized in order to

accelerate real-time rendering?

RQ4: How can we support a natural integration of VR within the building design

process?

In order for VR to become a natural and integrated part of the building design process, several

barriers needs to be overcome. In this context the technical ability to visualize large and

complex BIMs in real-time only represents one of them. How these techniques are actually

implemented with regards to accessibility, as well as usability and interface becomes equally

important consider. For instance, if time-consuming processes – although automated – are

required to realize a VR session this will probably affect an integration negatively. Similarly,

if the actual navigation interface is found too complex for non-experts, it will be difficult to

support end-user participation.

4

5

2 Background and related work

2.1 Definition of Virtual Reality (VR)
Ever since Sutherland (1965) first articulated the term Virtual Reality (VR) it has been

defined and used in many different ways. Ranging from simple environments presented on a

desktop computer to fully immersive environments experienced through head-mounted

displays and tracker systems, the term now means different things in various contexts. Within

the scope of this thesis, VR is defined as a computer-generated visualization of spatial data

that can be interactively controlled by a user and displayed on any type of screen.

Furthermore, the primary application that has been considered is that of real-time

architectural walkthroughs where users can explore and navigate through interior and exterior

spaces of a virtual building model (Mobach, 2008; Liu at al., 2014).

2.2 Real-time rendering
The field of 3D computer graphics includes several techniques that aim at producing 2D

images – often called frames – of three-dimensional geometric data. This is realized using a

process known as 3D rendering, where the input 3D-data is converted to pixels in a 2D image

based on the location of a virtual camera (Figure 1). When the resulting 2D image is displayed

onto a computer screen it basically represents a window into a three-dimensional world from

a specific location. The 3D rendering process can either be done in real-time or performed

offline, i.e. non-real-time. When non-real time rendering is used the purpose is to produce a

single image – or multiple images that are composed into an animation sequence or film – of

high quality that later can be displayed on a computer screen. Depending on the size and

complexity of the input 3D-data, the processing time ranges from minutes to hours or even

days, but the end result will in turn be able to realistically simulate lighting, shadows,

reflections and other natural phenomena. The end result, however, is a static image or film

sequence that once created cannot be changed by the user – it only represents a single view of

the input 3D-data.

Real-time rendering, on the other hand, takes a different approach as the process is repeated

continuously. During this process, the virtual camera can be moved freely, thus giving the

user the impression that he or she is travelling around in a virtual world. The actual navigation

can be controlled by an input device, such as a mouse or joystick, and gives the user the

ability to interact with the system. However, to make this “virtual journey” smooth and

interactive, the computer has to generate a sufficient number of frames per second to prevent

the user from experiencing motion sickness (Hettinger, 1992). In order to be able to perform

this computational expensive process, dedicated graphics hardware, also known as GPU

(Graphics Processing Unit), has to be used. Using a technique known as rasterization, the

GPU handles all the computations required to produce 2D image views of the 3D-data

(Akenine-Möller et al., 2008). Although powerful, the GPU still has limitations on the amount

of data that can be processed within a given time frame. This basically means that there

always exists an upper limit on the amount of 3D-data that can be interactively visualized.

6

Figure 1: With 3D rendering, an input 3D model is converted into an image based on the position of a

“virtual” camera.

2.3 Display systems
Although real-time rendering is the main technology for producing images of non-existing

objects or environments, the result may be displayed in a wide variety of ways. Ranging from

display on regular computer screens to solutions where a user is wearing a head-mounted

display (HMD), the basic difference is the level of immersion they enable. Here, the level of

immersion may be defined as the degree to which a user feels completely surrounded by the

virtual world. When considering Immersive VR, the most used solutions today are either a

CAVE (Cruz-Neira et al., 1992) or Head-Mounted Display (HMD) (Burdea and Coiffet,

2003). Examples of these are shown in Figure 2.

The HMD naturally supports stereoscopic vision in that it uses a small display for each eye:

one for the left and one for the right. By rendering the virtual world from two slightly

horizontally separated (virtual) cameras for each eye, the user experiences stereoscopic vision

similar to that in real life (Kjellin, 2008). For the CAVE solution LCD shutter glasses are

often used in order to provide the stereoscopic vision. These shutter glasses work by blocking

one eye’s view of the screen (or wall). When an image is rendered for the left eye, the shutter

glasses block the right eye view. For the right eye the process is then reversed. The switching

process is synchronized with the graphics card and performed at a high frequency, thus giving

the user a perceived true stereoscopic vision.

7

Figure 2: HMD (left) and CAVE (right) (Courtesy NASA and Chalmers)

A semi-immersive alternative to the CAVE is the Powerwall (Westerdahl et al., 2006). As

shown in Figure 3, it is basically a small cinema screen allowing for many people to view the

VR simulation simultaneously. By using stereographic shutter glasses or polarized glasses,

stereoscopic vision is enabled.

Figure 3: A Powerwall solution.

Finally, Desktop VR (Modjeska, 2003) refers to the case when the real-time rendering is

displayed on a regular computer screen or portable computer screen, without stereoscopic

vision. This solution is the simplest in terms of required hardware, and by using a projector

the system is also suitable for a larger audience. When using the “projector-assisted” approach

8

of Desktop VR, the solution thus basically becomes a small Powerwall without stereoscopic

vision.

Until very recently, HMDs have been either low-cost-low-performance or high-cost-high-

performance devices (Dörner et al., 2011), making them less useful in practice. However,

with the introduction of a new generation of consumer-directed HMDs, such as the Oculus

Rift and HTC Vive (Figure 4) this has completely changed. These devices provide a high

resolution, large field-of-view as well as orientation and positional tracking ability at a very

competitive price (around $600-1000). Within the scope of this thesis, both the Desktop VR

solution as well as the new generation of HMDs has been targeted.

Figure 4: Oculus Rift (left) and HTC Vive (right)

2.4 BIM and real-time visualization
A Building Information Model (BIM) may be defined as a digital representation of the

physical and functional characteristics of a building. Compared to a general 3D-CAD model,

a BIM is a different kind of representation since it defines not only geometrical data but also

specifications and information regarding spatial relations and connections among the included

components. The creation of a BIM is typically done in a modern modeling tool, such as

ArchiCAD or Autodesk Revit. These systems represent each component in a building as an

object with parametric properties and relations to other parts of the building. The collection of

objects is not seen as a 2D-drawing or 3D-model, but is instead stored in a single database

that represents the complete building. From this database it is then possible to derive different

representations, such as a 2D drawing or 3D model (Figure 5). As all representations originate

from the same data, any change in the database will automatically update all representations.

This property makes the system especially efficient when considering revisions and updates.

As a repository of information a BIM support a multitude of applications along the design and

construction process, including cost-estimation, energy analysis and production planning

(Eastman et al., 2011).

For the majority of BIM authoring tools the underlying data-model closely resembles that of

the Industry Foundation Classes (buildingSMART, 2007). The IFC was designed to provide a

universal basis for the information sharing over the whole building lifecycle (Eastman, 1999),

and is the de facto standard for representing BIMs. It differs from general 3D-file formats,

such as 3D Studio, FBX or COLLADA (Arnaud and Barnes, 2006), in that it represents a

9

building or facility with specific (virtual) building objects instead of pure geometrical entities.

The IFC scheme supports a wide variety of buildings objects, such as IfcWall, IfcDoor,

IfcWindow, IfcSlab and IfcRoof together with an unlimited set of properties connected to

each object. Using the IfcRelation feature, any object can also relate to other objects, making

it possible to form constraints and relations between building parts. For instance, a door

“knows” that it is placed in a particular wall. Another major difference between IFC and

general 3D-file formats is the representation of space. Every instance of an IFC-object must

belong to a spatial context. Special space-enclosing structures are the sites (IfcSite), buildings

(IfcBuilding), storeys (IfcBuildingStorey) and rooms (IfcSpace). Additionally, any window or

door placed in a wall results in an opening element (IfcOpening) that represents the cut-out in

the affected wall.

Figure 5: A BIM created in Autodesk Revit.

Although practically all BIM authoring applications follows the IFC-specification they still

differ in many ways when considering the level of information they contain and the ability to

extract that information. In that sense, it can be said that each application defines BIM in its

own way. In order to support the whole range of possible authoring environments, the work

presented in this thesis therefore defines a BIM according to the IFC-specification. That is,

the acceleration techniques presented within the scope of this thesis have been designed to

work with models defined according to the IFC-specification, and do not rely on any

additional data or features beyond that.

The introduction of BIM within the AEC field is interesting, as it makes it possible to use a

single source of data for 2D-drawings, offline renderings as well as real-time renderings and

VR. In theory, this should make it much easier to integrate real-time visualizations as a design

and communication tool during the actual design process. As 3D-models can be extracted

directly from the BIM-systems, there is no longer a need for the additional creation of a

10

separate 3D-model for visualization purposes. However, in practice, this development has

also introduced a new set of challenges. As primarily created to describe a complete building

in detail, BIMs can be too large and complex in order to be directly used for real-time

rendering (Dvorak et al., 2005; Svidt and Christiansson, 2008; Steel et al., 2012; Dalton and

Parfitt, 2013). Although commonly used software tools for BIM visualization is able to

directly load models regardless of size and complexity it is often difficult to achieve smooth

frame rates without further processing of the input dataset or by introducing non-conservative

acceleration techniques (Dubler et al., 2010). It is therefore common that a visualization

session has to be preceded by an optimization step in order to make the dataset more suitable

for use in a real-time environment. However, as this step has to be repeated as soon as the

design changes it severely affects an efficient integration of real-time visualization as a

communication tool (Dubler et al., 2010; Liu at al., 2014).

Recent times have also seen the use of so-called game engines for the purpose of real-time

visualization of BIMs (Yan et al., 2011; Shi et al., 2015; Merschbrock et al., 2016). Given the

image quality and immersion offered by modern computer games, game engines are often put

forward as a better alternative to conventional BIM-viewers, such as Navisworks, as they

offer high rendering performance and more elements of interactivity. However, although it’s

true that it is possible to use game engines to produce impressive visualizations, they still

require a lot of manual work in order for this to be realized (Shi et al., 2015; Merschbrock et

al., 2016). In Figure 6, a typical workflow from BIM to VR using game engines is illustrated

(Halaby, 2015). As can be seen, there are several steps that needs to be performed, including

model optimizations and other processes to provide real-time performance, e.g. occlusion

bake. Even with a streamlined process as the one described in Figure 6, this can easily add up

to several hours or even days, depending on the size and complexity of the BIM. As discussed

previously, this is a process that needs to be repeated for every major change of the design.

Figure 6: Typical software workflow from BIM to game engine (Halaby, 2015)

11

Looking forward, it could be argued that the ever increasing speed of CPUs and GPUs will

solve this problem simply by brute-force performance. However, at the same time we also see

that BIMs tend to become more detailed in terms of geometry and amount of objects as this

field matures. In addition, new display hardware puts even higher performance demands as

resolution (e.g. 4K screens) and frame rate requirements (e.g. Oculus Rift and HTC Vive)

increase. As such, the problem of interactivity and real-time performance is still important to

solve.

2.5 Frame rate and interactivity
An important property for any type of real-time visualization system is its ability to maintain a

sufficiently high frame rate. As defined by the frequency at which new images are presented

on screen it inherently affects user experience and task performance. A too low frame rate

will make the system less responsive and make navigation and other interaction tasks more

demanding at the same time as it greatly diminishes the sense of continuous motion. When

considering a minimum frame rate, many studies have found that user performance becomes

significantly reduced below 15 Hz for a number of different applications. Reddy (1997)

investigated the effects of different frame rates on human performance when faced with a

simple heading task in a virtual environment. During these tests low frame rate substantially

degraded user performance and a frame rate of around 15 Hz was suggested to serve as a

minimum requirement for a generally acceptable degree of performance. However, it was also

suggested that a higher frame rate should be strived for, as this was shown to improve

performance even further.

Barfield et al (1998) studied the perceived level of presence within a virtual environment as a

function of input device type and update rate. Although the type of input device had limited

effect, it was found that an update rate of at least 15 Hz was a critical value in order to

experience a sense of presence. Regarding ease and comfort of navigation, interactivity and

smoothness of motion, an update rate of 15 Hz was considered equally important. The study

further revealed consistently higher ratings for all factors when the update rate was increased

to 20 Hz.

In a more recent study, Claypool (2007) investigated the impact of frame rate on player

performance in first person shooter games. For movement tasks it was found that an increase

of frame rate from 7 Hz to 15 Hz significantly improved player performance. Unfortunately,

no data were collected beyond 15 Hz. For shooting tasks, the frame rate was found to be even

more important. Although the rate of improvement was steeper below 15 Hz, player

performance was increased all the way up to 60 Hz.

For everyday 3D design and engineering applications the importance of maintaining a

sufficiently high frame rate has also been highlighted. Experiments at The Boeing Company

show that low frame rate decreases the feeling of continuous motion and that improved

continuity helps user performance when searching for objects in a complex 3D model (Kasik

12

et al., 2002). Furthermore, empirical studies revealed that, although 10 Hz was considered

useful, massive model visualization users require at least 16 Hz in order to be considered

acceptable (Yoon et al., 2008).

Still, in practice, 15 Hz is not generally considered a sufficient level of interactivity. For

applications such as architectural walkthroughs, 30 Hz is often recommended as a minimum

frame rate in order to provide a suitable experience (Shiratuddin and Fletcher, 2006). Below

this number users will typically start to experience lag to such a degree that the impression of

continuous movement is lost (Herwig and Paar, 2002; Göttig et al., 2004).

Looking at the computer games industry it also becomes clear that 15 Hz is not enough to

satisfy player demands. For so-called first-person shooter games (FPS) 30 Hz is generally

considered the absolute minimum and many game developers even target 60 Hz in order to

give players a smooth and responsive experience (Rubino and Power, 2008).

In this context it is also important to highlight the main difference between film (e.g. motion

pictures) and real-time rendering in terms of frame rate. With current cinema using a

standardized frame rate of 24 Hz, it may not be obvious to see the benefit of going beyond

this number. However, while the rendered images represent singular moments in time, film

can record motion-blurred images which effectively integrate information over time. As a

consequence, smooth motion can be displayed at a comparably lower frame rate without

suffering from apparent "jumps" between discrete moments in time (Rubino and Power,

2008).

Nevertheless, with the introduction of a new generation of HMDs, such as the Oculus Rift and

HTC Vive the frame rate requirements have changed significantly compared to that of

desktop VR. In order to provide a useful VR experience 90Hz is now considered critical

(Hasan and Yu, 2015). This requirement is also different compared to that of desktop VR,

where a lower frame rate may still give a sufficient experience, albeit with less fidelity. Due

to a very strong connection to the tracker system, any update rate below 90Hz will produce

such visual artefacts that the system essentially becomes useless.

2.6 Rendering performance and acceleration techniques
In Figure 7 the graphics pipeline is illustrated. As can be seen it is built up by a number of

different stages and involves both the CPU and the GPU. The interaction between the CPU

and GPU can be thought of as a client-server pair, where an application acts as the client on

the CPU-side and uploads data and issues commands through the graphics driver that the

GPU then processes. To take advantage of hardware-accelerated rendering an application will

upload 3D positions that represent the vertices (i.e. corners) of a set of triangles to GPU

memory, and then issue draw commands that specifies which triangles to draw on screen. The

GPU will then transform and project each one of these triangles according to the position of a

“virtual” camera and, finally, convert it to a two

rasterization.

While the processes performed on the GPU used

programmable using so-called shader programs which offer developers more flexibility when

it comes to processing geometry and compute lighting. As illustrated in more detail in Figure

8 there is typically three main shader stages

Figure 8:

During the vertex shader stage, each vertex is individually processed. This stage transforms

and projects vertices to match the current view position (i.e. camera). During the geometry

shader stage complete primitives (i.e. triangles) are processed. A geom

and takes a single primitive as input and may output zero or more primitives. As such, it has

the ability to amplify geometry. Finally, the fragment shader processes individual fragments

(i.e. pixels) generated by the rasterization

When an application takes advantage of hardware

all of the geometry of a given 3D scene has to go through at least some parts of the graphics

pipeline every frame. Even with very powerful CPUs and GPUs such a scen

13

“virtual” camera and, finally, convert it to a two-dimensional image using a process known as

Figure 7: The graphics pipeline.

While the processes performed on the GPU used to be “fixed-function”, it is nowadays fully

called shader programs which offer developers more flexibility when

it comes to processing geometry and compute lighting. As illustrated in more detail in Figure

main shader stages – vertex, geometry and fragment.

 Different shader stages in the graphics pipeline.

During the vertex shader stage, each vertex is individually processed. This stage transforms

and projects vertices to match the current view position (i.e. camera). During the geometry

shader stage complete primitives (i.e. triangles) are processed. A geometry shader is optional

and takes a single primitive as input and may output zero or more primitives. As such, it has

the ability to amplify geometry. Finally, the fragment shader processes individual fragments

(i.e. pixels) generated by the rasterization into colors that will appear on screen.

When an application takes advantage of hardware-accelerated 3D rendering “out

all of the geometry of a given 3D scene has to go through at least some parts of the graphics

pipeline every frame. Even with very powerful CPUs and GPUs such a scen

dimensional image using a process known as

function”, it is nowadays fully

called shader programs which offer developers more flexibility when

it comes to processing geometry and compute lighting. As illustrated in more detail in Figure

vertex, geometry and fragment.

During the vertex shader stage, each vertex is individually processed. This stage transforms

and projects vertices to match the current view position (i.e. camera). During the geometry

etry shader is optional

and takes a single primitive as input and may output zero or more primitives. As such, it has

the ability to amplify geometry. Finally, the fragment shader processes individual fragments

into colors that will appear on screen.

accelerated 3D rendering “out-of-the-box”,

all of the geometry of a given 3D scene has to go through at least some parts of the graphics

pipeline every frame. Even with very powerful CPUs and GPUs such a scenario will therefore

14

always have an upper limit in the amount of geometry that can be processed at a certain frame

rate. However, by taking advantage of additional acceleration techniques it is often possible to

go beyond this limitation (Akenine-Möller et al., 2008). In general, these acceleration

techniques can be assigned into three different categories: pipeline optimizations which

increase performance by streamlining data flow through the graphics pipeline, Level-of-detail

(LOD) which increases performance by reducing the geometric complexity of far-away

objects and visibility culling which increase performance by rejecting non-visible objects. In

the following subsections each one of these acceleration techniques are explained in more

detail.

2.6.1 Pipeline optimizations

As with any other type of pipeline, the speed at which data can flow through the graphics

pipeline is inherently dictated by the slowest stage. The general idea behind pipeline

optimizations is to remove the bottlenecks without reducing the amount of geometry to

process. For instance, it is very often the case that an application is CPU-bound as opposed to

GPU-bound. What that means is that the GPU processes data and rendering tasks at a faster

rate than the CPU is able to feed it with new data and commands. In essence, the GPU

becomes underutilized. One of the main reasons for this behaviour is the amount of draw

commands and state changes that are made every frame (Hillaire, 2012). Rendering a set of

triangles in graphics APIs such as OpenGL usually involves two main steps: (1) modifying

the OpenGL states and objects in order to setup resources (i.e. textures and vertex arrays) used

for rendering and (2) issuing the actual draw call to tell the GPU to render the triangles. Both

these steps involve multiple calls to the graphics driver and therefore incur a certain cost (i.e.

time) on the CPU-side. In CPU-bound situations it is therefore possible to improve

performance by reducing state changes and draw calls. When considering state changes many

of them can often be removed by sorting the objects to render based on state, such as

materials and textures. By doing so, the states required for each material only has to be set

once per frame (as opposed to multiple times if objects are rendered in an unsorted way).

Furthermore, in order to reduce draw calls there are mainly two ways – geometry batching

and geometry instancing. With batching the idea is to combine geometry that share the same

state (e.g. material) in order to form larger, but fewer, “chunks” of geometry to render

(Wloka, 2003). By doing so, the same amount of geometry can be rendered, but with much

fewer draw calls. In contrast, geometry instancing takes advantage of the fact that many 3D

scenes contain replicated geometry, such as the wheels on a car or all the chairs around a

dining table (Dudash, 2007). With the instancing abilities on modern GPUs it is possible to

submit a single draw call when rendering several objects that share the same geometry. By

uploading each instance´s unique position to the GPU in a previous steps, they can all be

transformed to their correct place during the vertex shader stage.

2.6.2 Level-of-detail (LOD)

In contrast to pipeline optimizations, the idea behind LOD is to reduce the amount of

geometry that has to be drawn every frame. When objects are far away from the viewer it is

15

often possible to use a much simpler representation of them without affecting the visual

quality too much (Luebke et al., 2002). As illustrated in Figure 9, this technique involves the

creation of several different versions of an object, each one being represented by fewer

triangles than the previous one. The selection of which version to use for rendering is then

based on the distance to the viewer. However, although techniques exist to automate the

creation of simplified versions of an object, they usually involve some sort of manual

interaction in order to reach satisfying results (Garland and Heckbert, 1997).

Figure 9: Illustration of LOD. The original object is replaced by simplified representations when far

away from the viewer.

2.6.3 Visibility culling

As with LOD, the idea behind visibility culling is to increase performance by reducing the

amount of geometry to draw. However, instead of rendering simplified objects, visibility

culling tries to identify non-visible objects that don’t need to be drawn at all (Cohen-Or et al.,

2003). As illustrated in Figure 10, left, there will always be objects in a 3D scene that cannot

be seen from a certain point of view, because they are either outside the field-of-view or

hidden by other objects. The simplest form of visibility culling is view-frustum culling, which

rejects objects that are outside the visible field-of-view (Figure 10, middle). This operation is

typically not performed per-triangle but instead per-object using the objects bounding box

(i.e. a box that fully encloses the object) for quick rejection. A more complex form of

visibility culling is occlusion culling which rejects objects that are hidden by other objects

(Figure 10, right). Compared to view-frustum culling this is a much more complex process as

it requires computing how objects in a 3D scene affect each other. However, with the

introduction of occlusion queries it has been possible to take advantage of the GPU to

perform the actual visibility detection (Bartz et al., 1998). In essence, occlusion queries allow

an application to render some geometry and then “ask” the GPU if it turned out to be visible.

This way, proxy geometries (i.e. bounding boxes) can be used to test an object for visibility

before it is actually rendered (Figure 11).

Figure 10: Illustrating no culling (left), view

“Dimmed” objects are not sent to the GPU for rendering.

Figure 11: Using hardware occlusion queries it is possible to test the tree for visibility using a

bounding box representation (dashed lines) before rendering the actual tree model.

As described above, both view

therefore requires no offline pre

techniques that works by pre-

3D scene. During run-time, this set is then indexed in order to

are potentially seen from a certain region in the scene (Funkhouser and Séquin1993).

A somewhat hybrid approach is

indoor environments (Luebke and Georges 1995

creation of cells that are connected by

restrict rendering only to objects that are in the same cell as the camera as well as objects that

can be seen in adjacent cells trough

16

Illustrating no culling (left), view-frustum culling (middle) and occlusion culling (right).

“Dimmed” objects are not sent to the GPU for rendering.

Using hardware occlusion queries it is possible to test the tree for visibility using a

bounding box representation (dashed lines) before rendering the actual tree model.

As described above, both view-frustum culling and occlusion culling is performed

therefore requires no offline pre-computations. However, there is also visibility culling

-computing a potentially visible set from multiple regions in the

time, this set is then indexed in order to quickly obtain the objects that

seen from a certain region in the scene (Funkhouser and Séquin1993).

A somewhat hybrid approach is cell-and-portal culling which primarily lends itself for use in

indoor environments (Luebke and Georges 1995). As illustrated in Figure 12 it involves the

that are connected by portals. By using this data structure it is possible to

restrict rendering only to objects that are in the same cell as the camera as well as objects that

trough the portals.

frustum culling (middle) and occlusion culling (right).

Using hardware occlusion queries it is possible to test the tree for visibility using a

bounding box representation (dashed lines) before rendering the actual tree model.

frustum culling and occlusion culling is performed online and

computations. However, there is also visibility culling

from multiple regions in the

quickly obtain the objects that

seen from a certain region in the scene (Funkhouser and Séquin1993).

which primarily lends itself for use in

). As illustrated in Figure 12 it involves the

. By using this data structure it is possible to

restrict rendering only to objects that are in the same cell as the camera as well as objects that

17

Figure 12: Cell-and-portal culling

18

19

3 Research approach

The work presented in this thesis mainly falls into the category of technology and design

science. As such, it represents constructive research. As opposed to natural science,

technology and design related research may be considered “artificial” in that it produces new

artefacts and knowledge within a problem-solving paradigm. The concept is further explained

by March and Smith (1995, p.253) who states: “Whereas natural science tries to understand

reality, design science attempts to create things that serve human purposes.”

Within this paradigm, several research approaches that share a similar philosophy exists.

When considering the area of Information Systems (IS), the design science research approach

has mainly been popularized by Hevner et al. (2004). However, in many ways it has already

been a principal approach in engineering research and computer science for a long time

(Kuechler and Vaishnavi, 2008). Similarly, it is also very closely related to the constructive

research approach (Piirainen and Gonzalez, 2014).

Nevertheless, regardless of specific research approach, design–oriented research is mainly

concerned with the task of designing and evaluating an artefact. As discussed by Hevner et al.

(2004), such an artefact needs to address an existing unsolved problem, should build on and

contribute to theoretical knowledge of the problem domain and should be proven to actually

improve on existing solutions or attempts to solve the problem.

Since this approach exhibit many similarities to what software developers and engineers do as

part of their regular jobs, it may not be obvious what distinguishes design science research –

as well as constructive research – from conventional design work. According to Hevner, there

are two important differences between design research and the practice of design. First, design

science involves thorough and careful use of existing theories and methods from the scientific

knowledge base in order to build and evaluate the particular artefact. Secondly, it contributes

to the scientific knowledge base by scholarly dissemination. As an effect of the latter, design

research also tries to solve a class of problems as opposed to a specific situated problem,

which is more common in design practices.

As for the actual artefacts, it has become well established within the design science field to

identify four different types; constructs, models, methods, and instantiations (March and

Smith, 1995; Hevner et al. 2004; Johannesson and Perjons, 2014).

Constructs are definitions and concepts that form the “language” of a domain. They are the

smallest conceptual parts that make it possible to understand and communicate about various

phenomena. Typical examples are the concepts of method in Java or class in the Unified

Modeling Language (UML).

20

Models represent possible solutions to practical problems. They are sets of propositions or

statements that express relationships among constructs. For instance, a database model can be

used for developing a database system.

Methods are a set of steps (an algorithm or guideline) used to perform a task or solve a

defined problem. Typical examples are methods for database design or a search algorithm.

Instantiations are working systems that can be used in a practice. They are realizations of an

artefact in its environment, such as a database for electronic medical records or a Java

program realizing a search algorithm. Instantiations can always embed constructs, models,

and methods.

Furthermore, Gregor and Hevner (2013) discuss how different design science contributions,

i.e. artefacts, can be classified according to the maturity of the solution, as well as the

application domain. As illustrated in Figure 13, they identify four different types of

contributions – improvements, inventions, exaptations, and routine design.

Improvements are new solutions for known problems. These kinds of contributions address an

existing problem with a new or enhanced solution, such as one offering better efficiency,

usability or utility compared to the previous state of the art.

Inventions are new solutions for new problems. These kinds of contributions involve an

innovation that addresses a new and unexplored problem by offering a novel solution, such as

the first X-ray machine or the first data mining system. As such, they are typically much less

common than improvements.

Exaptations are known solutions extended to new problems. These kinds of contributions

adapt or extend an existing solution to address a problem for which it was not intended for in

the first place, such as the use of data mining in meteorology.

Routine designs are known solutions to known problems. These types of designs are often the

application of existing knowledge to a well-known problem, such as the creation of a business

application using best practice solutions extracted from the knowledge base. In contrast to the

previous discussed types, routine designs do not offer the same opportunity to contribute to

the archival knowledge base of foundations and methodologies. As such they typically do not

count as design science research contributions.

21

Figure 13: Design science research knowledge contribution framework (Gregor and Hevner, 2013)

When positioning the design science contribution presented in this thesis it falls within the

improvements quadrant in that it improves on the previous state of the art with respect to

efficiency as well as utility. As such, this research offers potential to contribute new

knowledge to the scientific knowledgebase. As for the actual artefact, it is considered an

instantiation in that it is a working system that can be used in practice.

When considering the actual research approach, Hevner et al. (2004) and Hevner (2007)

propose a framework containing three cycles that places the design activity into a scientific

framework (Figure 14). The three cycles are the design cycle, relevance cycle and rigor cycle.

The core of the framework is the design cycle, which represents an iterative process where

design alternatives are generated and evaluated against the requirements until a satisfactory

design is achieved. The other two cycles connect the design cycle to the environment and to

the scientific knowledge base. The relevance cycle first identifies an opportunity or an

existing unsolved problem in the environment which then translates into a set of requirements

that needs to be addressed by the designed artefact. An evaluation of the artefact then shows

how well it meets the requirements to solve the stated problem. If it is shown to improve on

existing solutions or attempts to solve the problem, the artefact is then fed back into the

environment. However, the cycle repeats if the problem is only partially addressed or new

problems emerge. The rigor cycle is the part that separates design science research from

conventional design in a work environment (Hevner, 2007). During this cycle, the scientific

knowledge base provides past knowledge to the project in order to ensure that the designs

produced are research contributions and not routine designs and that appropriate and rigorous

22

methods are used for evaluation of the artefact. At the end of the cycle the newly developed

knowledge on how to solve the identified problem is added to the knowledge base (e.g. by

academic publication).

Figure 14: Design science research framework and cycles (Hevner, 2007)

In addition to the framework, Hevner et al. (2004) also outlines a set of guidelines for

effective design science research. As illustrated in Figure 15 it consists of seven guidelines

that highlight issues that should be addressed when performing this type of research.

When mapping the work in this thesis onto Hevners research framework, it can essentially be

said that each appended paper represents a single design loop, encompassing all three cycles.

Starting from the recognized opportunity (i.e. the use of BIMs for VR simulations have great

potential) as well as related problems (e.g. BIMs provide a challenge to manage in real-time),

an initial technology-based solution has been designed using input from the knowledge base.

This solution has then been evaluated to show how well it solves the problem which

essentially ends the design loop. Using the discoveries from the previous loop together with

any changes in the environment and knowledge base as input, the problem formulation and

evaluation criteria has then been updated and further addressed for each subsequent paper.

Each design loop thus represents an incremental step towards realizing the final software

application, which as of the last paper encompasses all the properties that have been identified

as important in order support everyday use of VR during the building design process. The

complete process will be described in more detail in Section 4, where each of the five

appended papers is summarized, followed by a description of the final software application –

BIMXplorer. As for the identification of required properties this will be discussed in the

following subsection.

23

Figure 15: Design science research guidelines (Hevner et al., 2004)

3.1 Requirements
One of the most important parts of a design science project is to formulate the acceptance

criteria for the ultimate evaluation of the designed artefact. As already stated, the starting

point for the work presented in this thesis was the recognized opportunity of combining BIM

and VR in an efficient way, as well as the related performance problems already identified in

the literature and observed in an actual practise (Johansson, 2010). Thus, already from the

start, the ability to provide real-time rendering performance stood out as a fundamental

requirement to satisfy. However, during the course of this work new opportunities and

problems have emerged which have called for updates and changes to the list of requirements

that the final artefact should be evaluated against. In order to give a better understanding of

how the individual contributions relate to the relevance cycle, the final set of requirements is

presented in advance (i.e. before the summary of the papers) below:

The system should provide real-time rendering performance. As a fundamental feature of any

real-time visualization system this requirement needs no further motivation. Still, when

considering the actual definition of what real-time is, the concept becomes somewhat fluid

and has to be mapped to the actual use case. As compiled from the literature, this thesis

defines the satisfactory as well as optimal level of frame rate for desktop VR as 30 and 60 Hz,

24

respectively. However, with the introduction of a new generation of HMDs, this requirement

has then been transformed into a strong 90Hz demand.

The system should support architectural BIMs taken from real-world projects. Although

posed as a requirement, this should be read more as a delimitation. As of today, a BIM-based

design and construction project will, eventually, include several different BIMs, each on

representing a single discipline (i.e. architectural, structural, etc.). However, the primary use-

case that has been considered in this thesis is that of architectural walkthroughs. Given VR’s

ability to convey scale and overall experience of space it naturally lends itself especially

useful in order to study architectural qualities (Westerdahl et al., 2006; Mobach, 2008). In

addition, this use-case is related to many non-professional stakeholders (e.g. clients or

building end-users) who naturally have less experience in interpreting traditional design

documents, such as 2D drawings. This group of people therefore have much to benefit from

the use of VR in terms of communication and enhanced understanding. Thus, as reflected by

the type of models that has been evaluated in the papers, this requirement (or delimitation) has

primarily been posed in order to clarify that the application of visualizing structural or

mechanical, electrical and plumbing (MEP) BIMs in isolation has not been explicitly

addressed. However, this does not necessarily mean that the system cannot be used for this

use-case as well.

The system should accurately reflect the input dataset. When considering acceleration

techniques it is possible to resort to solutions that favour interactivity at the expense of

accuracy, such as contribution or drop culling. However, seen from a scientific perspective

this introduces another level of complexity when it comes to verification and evaluation. As

the visualization is no longer guaranteed to truly reflect the input dataset, these types of

solutions also has to be evaluated based on how well they perform in terms of accuracy. In

order to not introduce this level of complexity into the evaluation, this requirement has been

posed.

The system should not rely on time-consuming pre-processing steps. A viable option when

considering the isolated task of providing real-time rendering performance of large 3D

datasets is to perform a pre-computation step that will allow the final visualization session to

run at high frame rates. However, such a solution will inherently pose itself as a potential

obstacle in that an additional process is needed before any visualization session can be

realized. This requirement is thus based on the simple logic that if we can omit any additional

process, it will make the use of the technology more accessible and therefore easier to

integrate as an everyday tool into real practise.

The system should support a wide range of users. A typical building project will involve a

number of different stakeholders with different backgrounds and expertise. When considering

a successful integration of VR within this setting, it is thus highly desirable that the medium

can be easy to use and, ultimately, controllable by anyone.

25

4 Summary of the papers

4.1 Paper I

Efficient Real-Time Rendering of Building Information Models

Background and purpose

Due to a large number of individual objects and high geometric complexity, typical BIMs are

not easily rendered in real-time. However, compared to a general 3D-model, a BIM defines

not only geometrical data, but also information regarding spatial relations and semantics. The

idea behind Paper I was to investigate if it’s possible to take advantage of the additional data

in order to accelerate real-time rendering.

Method

By extracting spaces (cells) and openings (portals) from a BIM we can automatically create a

cells-and-portals partitioning. Using this data structure, the rendering is accelerated by

rejecting objects that are not in, or can be seen from, the specific room that the viewer is

currently in. To make this algorithm efficient also in outdoor cases, additional mechanisms

had to be developed. These included a technique that utilizes frame-to-frame coherence and a

procedure to efficiently reject non-visible exterior walls. The proposed technique was tested

on two fairly large BIMs and evaluated against traditional view-frustum culling.

Results

Compared to traditional view-frustum culling, the new technique was often 10 times faster,

for both exterior and interior view points, essentially making real-time rendering of large

BIMs possible.

4.2 Paper II

Real-Time Visualization of Building Information Models (BIM)

Background and purpose

Paper I showed the benefit of rejecting hidden objects (i.e. cull away) with respect to real-time

performance. However, the technique developed in Paper I relied heavily on specific BIM-

data (i.e. spaces) being present in order to function properly. As evident from many BIMs

received from real-world projects, the required data is not always present. The idea behind

Paper II was to evaluate and analyze commercial BIM viewers in terms of real-time rendering

performance and to evaluate more general acceleration techniques (i.e. that do not rely on

specific BIM-data).

26

Method

Four commercial BIM viewers were in-depth analyzed in terms of acceleration techniques

and real-time rendering performance. In addition, a general occlusion culling algorithm,

CHC++, was implemented in a prototype BIM viewer and further refined. All viewers,

including the prototype, were evaluated using four different BIMs taken from real-world

projects.

Results

All four commercial viewers shared limitations in their ability to handle large BIMs

interactively. The prototype viewer had no such problems. Consequently, the CHC++

algorithm was found to be a suitable acceleration technique for efficient real-time rendering of

BIMs.

4.3 Paper III

Integrating Occlusion Culling and Hardware Instancing for Efficient Real-

Time Rendering of Building Information Models

Background and purpose

In Paper II, occlusion culling, and more specifically, CHC++ were found to provide a suitable

acceleration technique for typical BIMs. However, for viewpoints when many objects are, in

fact, visible, occlusion culling alone may not always be able to guarantee sufficiently high

performance. Based on the observation that typical BIMs contain many replicated objects, the

idea behind Paper III was to evaluate the combination of occlusion culling and hardware-

accelerated geometry instancing – a feature of modern GPUs that allow replicated geometry

to be rendered very efficiently.

Method

By taking advantage of temporal coherence together with the development of a lightweight

data transfer approach, occlusion culling could be performed at the object level at the same

time as visible, replicated geometry can be efficiently rendered using hardware-accelerated

geometry instancing. The combination of techniques was evaluated on four different BIMs

taken from real-world projects.

Results

Compared to only using occlusion culling the new technique were shown to offer additional

speed-ups of 1.25x-1.7x in viewpoints that represent the worst case scenarios when only

occlusion culling is utilized.

27

4.4 Paper IV

From BIM to VR – Integrating immersive visualizations in the current design

process

Background and purpose

When considering the use of immersive visualization technology within the AEC field, the

introduction of consumer-directed, low-cost-high-performance HMDs devices, such as the

Oculus Rift, has opened up new possibilities. Compared to previous solutions, such as

CAVEs and PowerWalls, many inherent barriers, including investment costs and limited

accessibility can now be broken. However, the performance demands required by stereo

rendering are still difficult to satisfy without additional acceleration techniques. The idea

behind paper IV was to investigate the acceleration techniques proposed in Paper II and III in

a stereo setting as well as setup and evaluate a system that allowed immersive visualizations

to become a natural and integrated part of the current design process.

Method

The rendering engine developed in Paper II & III was implemented as a plugin in Revit,

thereby offering direct visualization from a BIM authoring environment. To support a wide

range of users (i.e. from gamers to construction site workers) a simple navigation interface

was developed by means of a so-called PowerPoint remote. The proposed system was tested

on a BIM taken from a real world project and evaluated from three different perspectives -

rendering performance, navigation interface and the ability to support fast design iterations.

Results

Compared to current immersive solutions (i.e. CAVEs and PowerWalls) the proposed system

is non-expensive, portable (i.e. accessible) and has very good BIM support. Furthermore,

regarding rendering performance, navigation interface and the ability to support fast design

iterations, it has all the needed properties to function well in practice.

4.5 Paper V

Efficient Stereoscopic Rendering of Building Information Models (BIM)

Background and purpose

Stereo rendering is traditionally done by performing two individual and serial rendering

passes – one for the left eye and one for the right eye. This was the method used in Paper IV

and compared to monoscopic rendering, this setup essentially increase the number of draw

calls and rasterized triangles by a factor of two. One way to remove the requirement of a

second pass is by taking advantage of the geometry shader in order to duplicate and present

the geometry for the left and right eye. However, even if this reduces the number of draw

calls, the geometry shader typically introduces significant overhead on the GPU side. The idea

28

behind paper V was to explore the possibilities of using hardware-accelerated geometry

instancing in order to provide a single-pass stereoscopic rendering in a split-screen stereo

setup (i.e. as found in the Oculus Rift)

Method

With the instancing capabilities of modern GPUs it is possible to produce multiple output

primitives from a single input, without introducing the geometry shader. As such, it becomes

suitable for producing both the left and right eye view of the scene within a single rendering

pass. However, the main difficulty with this approach is that current graphics API does not

support multiple viewport output from the vertex shader. In the proposed technique this is

solved by performing a screen-space transformation of the geometry, together with user-

defined clipping planes. In addition to reduce the number of draw calls the proposed

technique were shown to integrate very well with occlusion culling based on hardware-

accelerated occlusion queries (i.e. as used in Paper II, III and IV). With a single depth buffer

used for both the left and right eye, only a single occlusion query is ever needed per visibility

test, effectively reducing the number of occlusion tests by a factor of two compared to the

traditional two-pass stereo rendering technique. Furthermore, with little modifications, the

new stereo instancing technique could be extended to also support the geometry instancing

technique developed in Paper III.

Results

The new stereo instancing technique is very well suited for integration with occlusion query-

based occlusion culling as well as conventional geometry instancing and has been shown to

outperform traditional two-pass stereo rendering approach, geometry shader-based stereo

duplication, as well as brute-force stereo rendering of typical BIMs on recent hardware.

29

5 BIMXplorer v1.0

BIMXplorer represents the final system (i.e. artefact) that is the result of the research

presented in this thesis (Figure 16). In essence, this is a working software application that

allows large and complex BIMs to be directly visualized in real-time, either through a

traditional desktop interface (i.e. screen, mouse and a keyboard) or by using a modern HMDs

such as the Oculus Rift. Many of the systems features, such as the navigation interface and the

integration as a plugin within Autodesk Revit are described in detail in Paper IV. It also

incorporates the acceleration techniques developed and presented in Paper II, III and V. In

addition, BIMXplorer has support to directly load IFC-files through the xBIM (eXtensible

Building Information Modelling) software development toolkit. Also, in order to allow for a

more user-friendly navigation the system takes advantage of the PhysX SDK to support

collision detection. Upon model loading, collision meshes can be automatically generated

which prevents user from navigating “through” objects, such as walls and floors, in a similar

fashion as modern 3D games.

Figure 16: BIMXplorer interface as a plugin in Autodesk Revit.

To improve the visual quality BIMXplorer takes advantage of a technique known as Screen-

Space Ambient Occlusion (SSAO), which calculates how exposed each point in a 3D scene is

to ambient lighting (McGuire et al., 2012). Compared to a constant ambient term, this gives

much better depth perception and provides clues on how objects relate to each other as seen in

Figure 17.

30

Figure 17: A BIM containing approx. 40,000,000 triangles rendered in real-time in BIMXplorer with

constant ambient term (left) and SSAO (right) (Revit model courtesy of Jason Halaby, WRNS Studio).

Although not yet publicly available, BIMXplorer has already been used during several

courses at Chalmers University of Technology. These courses involve the design of a

suburban area as well as the design of a new university campus area featuring several new

buildings created in Autodesk Revit. Throughout these projects BIMXplorer has been used as

an integrated visualization tool in order evaluate different designs and to communicate ideas

among team members. At the end of these courses each team then presents their proposal by

performing live walkthroughs during a final seminar (Figure 18). Being that a diverse set of

BIMs have been created during these projects the courses have served as a form of continuous

beta testing of the software.

In addition BIMXplorer has been in active use for over a year at NCC Construction Sweden

(Jörnebrant and Tomsa, 2015; Roupé et al., 2016; Brännström and Ljusteräng, 2016) and has

also been used during several projects at WRNS Studio, an architecture and planning firm

located in San Francisco, California. As such, it has been proven useful in actual practise.

31

Figure 18: Students at Chalmers University of Technology presenting design proposals using live

walkthroughs in BIMXplorer.

32

33

6 Discussion

In this section the results from the five appended papers are discussed in relation to the four

research questions posed in Section 1 as well as the requirements outlined in Section 4.

6.1 Current state of BIM visualization
Going back to the initial problem statement, previous literature had already recognized the

challenges of using BIMs for the purpose of real-time visualization. Still, many questions

remained, such as the magnitude of the problems and how these were related to hardware and

model complexity. However, based on the results from the five appended papers we can now

conclude that this is, in fact, a real issue. In essence, all papers reveal this in that additional

acceleration techniques – i.e. beyond that of conventional view-frustum culling or brute-force

rendering – are needed in order to provide a suitable level of interactivity when rendering

large BIMs taken from real-world projects. Furthermore, the in-depth analysis in Paper II

shows that existing BIM-viewers are currently unable to address the problem in a satisfying

manner. Also, given the huge spread in terms of rendering performance these problems can no

longer only be discussed in relation to model complexity and lack of efficient hardware, but

needs to include software capacity as an additional variable. For instance, with BIMSight any

model may be seen as large and complex.

Still, it is also very important to acknowledge that several BIM-viewers have techniques to

guarantee a certain level of interactivity by sacrificing correctness (e.g. drop culling).

However, as identified in Paper II, the use of drop culling does not only produce an incorrect

image but also gives very obvious “popping” artefacts as the priority of which objects to

render constantly changes. Although no formal evaluation has been conducted as to what

degree, if any, that this influences experience and usage negatively, these ”popping” artefacts

has been reported as very distracting in previous literature (Willmott et al., 2001; Giegl and

Wimmer, 2007). As such, this thesis argues that non-conservative acceleration techniques

such as drop culling are not an adequate solution to the interactivity problem.

Furthermore, when considering the actual interactivity problem as well as the corresponding

requirements on frame rate, this is something that has changed during the course of this work.

Although 60 Hz was initially considered an optimal level of interactivity this is no longer the

case for all display systems. With the introduction of a new generation of HMDs, such as the

Oculus Rift, 90Hz is now considered the absolute minimum (Hasan and Yu, 2015). Due to

very strong connection to the tracker system, any update rate below 90 Hz will provide such

visual artefacts that the system essentially becomes useless. As such, this requirement is

different compared to desktop VR, where lower frame rates may still give an ok experience,

although with less fidelity (Claypool, 2007; Rubino and Power, 2008). When also taking into

account that these devices require the 3D scene to be rendered twice it should be no doubt that

existing systems or techniques will not be able support HMDs in their current state.

34

In this context it is also important to highlight the recent trend within the AEC industry to use

game engines for the purpose of real-time visualizations. Although game engines typically

share the same performance problems as dedicated BIM-viewer they often have in-built tools

or overall support to optimize or prepare 3D models for real-time performance. As such, it is

then possible to prepare or optimize a BIM for the purpose of real-time visualization.

However, this process typically involves a lot of labour-intensive, manual work making it less

suitable in practise (Shi et al., 2015; Merschbrock et al., 2016).

Recent times have also seen the introduction of a couple of commercial applications, such as

Revizto and Enscape, which mimics the behaviour of BIMXplorer in that they provide a

plugin interface to a BIM authoring environment, e.g. Revit. These applications have not been

thoroughly evaluated as part of this thesis. However, as of an initial investigation it is clear

that these systems primarily rely on brute-force performance, and therefore will have

difficulties to scale up to the large type of BIMs that have been evaluated in this thesis.

In relation to the above discussion it is also relevant to pose the question of whether or not we

truly need to be able to visualize large BIMs in the first place. A simple solution to the

interactivity problem would instead be to only visualize sub-sets of a complete building

model, which is already a commonly used approach (Dubler et al., 2010; Shi et al., 2015).

Assuming a reasonably powerful hardware it is very likely that the interactivity demands can

be fulfilled as long as we restrict the visualization session to a certain region of a building.

However, being forced to work with a sub-set of a complete model for the sake of

performance is, by all means, a restriction. Although this thesis have only addressed actual

user studies to a small degree (i.e. Paper IV), there are other recent publications that have

conducted user studies with this particular system (Jörnebrant and Tomsa, 2015; Roupé et al.,

2016; Brännström and Ljusteräng, 2016). Here, the ability to interactively navigate a complete

building have been identified as a major feature in that it allows stakeholders to inspect the

building as a whole and study and get an understanding of internal logistics and

communication, e.g. ”how many doors needs to be passed in order to get from the entrance to

the lab area?”. Also, the ability to have everything in a single model has been expressed as an

important aspect in order to truly have a virtual representation of the actual building (Roupé et

al., 2016). Nevertheless, the techniques and, ultimately, the final system – BIMXplorer –

developed within the scope of this thesis naturally supports the ability to only show sub-set of

a complete model.

Connecting to all of this is of course on what premises existing solutions as well as the

developed techniques have been evaluated. In other words, are the models used relevant test

cases? Except for the two models used in Paper I, all models have been received from real-

world projects. Ranging from apartment and office buildings to more open ones, such as a

library or hotel, they represent the wide variety of building types that can be encountered in

practise. Also, these models have not primarily been chosen to showcase the developed

technique, but instead been used as drivers for the development of new techniques. To better

simulate a worst-case scenario two of the models (the hotel and the office building) have been

35

”completed” in that furniture and other interior equipment have been placed at all levels (i.e.

floors) in the building(s). Among Swedish architects the general strategy today appears to be

to only add interior equipment at certain levels in order to not make the models too large and

complex. This, however, appears not to be the case in the US (Maller, 2011) and in order to

better mimic an international situation additional levels have therefore been ”completed”.

6.2 Efficient real-time rendering of BIMs
Regarding ways to accelerate real-time rendering of BIMs two main ideas were initially

considered: (1) to take advantage of the natural occlusion present in typical buildings and (2)

to take advantage of the additional information (e.g. metadata) contained in a BIM. Both these

ideas were explored and combined in Paper I, where information about spaces and openings

was used to take advantage of portal culling (Luebke and Georges, 1995) without the need for

any manual interaction or offline pre-processing. Although portal culling has been primarily

used for indoor scenes it was shown to be efficient also for exterior viewpoints if additional

techniques were added. However, even if the developed technique solved the performance

problem of rendering large BIMs it turned out to be less suitable in practise. Because of the

strong requirement that spaces and openings has to be correctly defined in the model, it would

only be fully functional in situations where complete BIMs (i.e. complete in the sense that all

spaces and openings are present) can be guaranteed. Although openings are typically

generated automatically in a BIM authoring system as soon as a door or window is placed in a

wall, the same is not true for spaces. Instead, spaces have to be manually added to the model

as any other object - a process typically done during later stages of the design. Consequently,

to support real-time visualization during all stages of the design process, it becomes difficult

to have the main acceleration technique depend on a specific type of object - or specific data -

being present in the model. Instead, a much more versatile solution could be found simply by

looking at the general characteristics of a typical BIM – high level of geometry occlusion. As

identified in Paper II, CHC++ (Mattausch et al., 2008), a state-of-the art occlusion culling

algorithm, turned out to be a very good fit for real-time rendering of BIMs, essentially

outperforming all existing BIM viewers on the market. Although perhaps seen as an obvious

choice in retrospect, a general occlusion culling system is by far not guaranteed to always be a

suitable solution. As seen from the performance results from the Navisworks occlusion

culling system, it may very well perform worse than simple view frustum culling for many

viewpoints. Nevertheless, CHC++ turned out to be very efficient, not only in interior, but also

for exterior viewpoints, making it a very good starting point for further improvements. Still,

even if the rejection of hidden objects provide a huge speed-up, there are typically several

viewpoints that contain many objects that are, in fact, visible. Based on the simple logic that

there is a high probability that such viewpoint contain many replicated objects, e.g. imagine

all the windows seen in a hotel facade , Paper III then explored the possibility of combining

occlusion culling with hardware-accelerated instancing – a feature on modern GPUs to render

replicated objects efficiently. Although the use of instancing as well as occlusion culling has

many examples in the literature, no known efforts had been previously made to combine these

two techniques.

36

As seen from the results in Paper III, the idea of providing instanced rendering of un-occluded

replicated objects, turned out to be a very good complement to the original CHC++ algorithm.

As with the portal culling approach, the use of instancing requires specific data being present

in the BIM. However, this information forms an integral part of any modern BIM authoring

system – once an object of a certain type is added to the model it essentially becomes an

instance of that type, meaning that the required data becomes available from the model. Also,

the main difference compared to the portal culling approach is that the instancing technique is

implemented in a way that takes advantage of replicated objects if present, but simply

degrades to a standard CHC++ solution if there are no visible replicated objects. In other

words, the technique does not negatively affect performance if no replicated objects are found

visible.

However, with the introduction of a new type of consumer-directed HMDs, the rendering

performance requirements changed. Not only became frame-rate requirements higher, but also

the requirement of producing two different views every frame. As identified in Paper IV, the

developed techniques were suitable also for stereo rendering. Even if two rendering passes

was now required (i.e. one for each eye) the current acceleration technique was still efficient

enough to support real-time frame rates. Nevertheless, as the performance demands, in terms

of resolution and frame rate, became higher for each version of the HMDs it became clear that

additional acceleration techniques were eventually needed. Fortunately, the concept of

hardware instancing turned out to offer a solution also in this case. As identified in Paper II,

the occlusion culling system was mainly CPU-bound on high end systems due to a large

number of draw-calls. With a traditional stereo setup, this amount essentially doubled.

Although the instancing technique (Paper III, IV) made the situation better, the amount of

draw-calls still needed to be reduced in order to reach the required frame rates. The successful

use of instancing then naturally sparked the idea of also using it for stereo rendering. After all,

stereo rendering is essentially a process of rendering almost two replicates of the complete

3D-scene. Ultimately, this idea then became stereo instancing – an efficient single-pass stereo

rendering technique. As seen from the results in Paper V, this also made a perfect fit for the

occlusion culling system, in that not only draw-calls, but also occlusion tests became reduced

by a factor of two, i.e. as compared to a traditional two-pass stereo setup.

As it would turn out, however, the concept and potential of stereo instancing had

independently been recognized by developers from the game development community

(Wilson, 2015). At the time of formal publication of Paper V, the stereo instancing technique

was already considered a best practise within the game development industry (Vlachos,

2015). Still, the paper contributes the first detailed description of the technique and a thorough

performance evaluation. For the purpose of efficiently rendering BIMs it is also the actual

combination of the different techniques – i.e. occlusion culling, stereo instancing,

conventional instancing and batching of walls – that is important in order to provide the

required frame rates.

37

So, in perspective, the initial idea of taking advantage of the natural occlusion present in

buildings as well as metadata actually turned out to be a successful approach, albeit in a

different form.

Nevertheless, in this context it may also be relevant to further discuss the brute-force

approach. Given that this alternative was surprisingly close to deliver sufficient frame rates

for the Hotel model (Paper V), it does seem like a viable option in the near future. However,

although this was true for the Hotel model, this was not nearly the case for the Student house

or Office buildings. With the Hotel model only having roughly half the amount of triangles

compared to the Office building, this puts things in perspective. Another aspect to consider is

that with the brute-force approach essentially all of the GPUs power will be used simply to

rasterize triangles. That is, even if the brute-force performance of future GPUs will be able to

manage all of the dataset within an acceptable time frame, there will be less processing power

left to do better shading, like SSAO, for instance. As such, it will always make sense to use

additional acceleration techniques in order to better utilize the GPUs resources.

6.3 Integration of VR within the AEC field
In order for VR to become a natural and integrated tool within the design process there is

more to consider than just the ability to visualize large BIMs in real-time. For instance, if

time-consuming pre-processing steps or manual interactions are needed in order to support

real-time performance it is highly likely that this will affect a natural integration negatively

(Liu at al., 2014). However, following a design science approach, the techniques presented as

part of this thesis have all been developed with the requirements and the integrational aspects

in mind. Going back to the requirements that the final artefact should be evaluated against

(Section 4), these can essentially be summarized as “Being able to support instant/direct,

artifact-free and user-friendly real-time VR walkthroughs of architectural BIMs taken from

real-world projects on systems that exist today”. When considering real-time performance as

well as the actual definition of what real-time is the previous subsections have already

discussed this. It has been shown that, when combined, the developed techniques and

algorithms allow architectural BIMs taken from real-world projects to be rendered, in stereo,

at more than 90 frames per second on off-the-shelf laptops. Moreover, contrary to the

approach taken by several existing BIM-viewer, the developed techniques do not introduce

any visual artefacts, e.g. omitting objects that should be visible.

When considering the actual integration of VR within the design process, Paper IV introduced

the idea of using the rendering engine as a plugin in a BIM authoring application instead of a

stand-alone application. Together with the use of a new type of consumer-directed HMD, the

Oculus Rift, it essentially offers a “one button click” connection between the design

environment, i.e. the BIM authoring software, and immersive VR. Compared to previous

immersive solutions, like CAVEs and Powerwalls, this opens up a number of possibilities

within the design process. With a low cost, portable solution that directly support BIMs it is

possible to take advantage of immersive visualizations anywhere at any time during the

38

design process. Although the very existence of the Oculus and HTC Vive made much of this

possible, it must be highlighted that the techniques developed in this thesis are very important

in order for the VR-technology to be used as an everyday tool during the design. As already

discussed, the real-time rendering strategy used by any of the tested BIM viewers will not

support modern HMDs. That is, even if stereo VR support was formally added, none of the

tested viewers would be able to provide the required frame rates without introducing severe

visual artefacts. Nevertheless, if we also include the use of game engines several examples

can be found where modern HMDs has been used to provide immersive visualizations of

BIMs. Still, as discussed, the use of game engines for the purpose of BIM visualizations

currently requires additional optimization and preparation time. Even if an efficient pipeline

or work procedure has been established (Halaby, 2015), this process can easily range from

hours to days. In comparison, the technical contributions presented in this thesis cut this

process down to, on average, 60 seconds for complete architectural BIMs. Not only does this

make the use of immersive VR highly accessible in the first place, but it also supports an

active use during fast design iterations.

Furthermore, as evaluated in Paper IV, the simple navigation interface makes it suitable also

for inexperienced users. Especially when considering building end-users this becomes an

important property. As of today user involvement is mostly restricted to reviewing traditional

2D-plans which may be difficult to fully interpret for all the different stakeholders in a

project. With the ability for any type of user to freely navigate proposed designs from an

immersive, first person perspective a much better understanding can often be achieved

(Heydarian at al., 2015).

To what extent the technical contributions and, ultimately, the final system will pave the way

for a more integrated use of VR during the design process remains somewhat an unanswered

question. As evaluated against the technical requirements it has all the properties needed in

order to function well in practise. Still, except for the evaluation of the navigation interface,

no formal/documented user-studies have been conducted within the scope of this thesis.

However, early versions of the system, as well as the final system have already been used in

several other studies, where its suitability as a tool to enhance understanding and

communication has been highlighted (Kreutzberg, 2015; Roupé et al., 2016; Hermund and

Klint, 2016). It has also been used during several courses at Chalmers University of

Technology. In addition, it has been in active use in several construction projects for over a

year at NCC Construction Sweden (Jörnebrant and Tomsa, 2015; Roupé et al., 2016;

Brännström and Ljusteräng, 2016). Simple logic tells us that this would not have been the

case if the system was found unfit for use in real-world projects.

39

7 Conclusions and future work

The research presented in this thesis has contributed to a better understanding regarding the

complexity and challenges involved in visualizing large and detailed BIMs in real-time. It has

been shown that additional acceleration techniques are, indeed, needed in order to solve the

interactivity problem and that existing BIM-viewers are currently unable to address this issue

in a satisfying manner – this at the same time as a new generation of VR hardware calls for

even higher performance demands.

In order to address the current situation this thesis contributes with the design and evaluation

of a new software application that provides a “one-button-click” solution from BIM to VR.

Following a design science research approach this application has been developed in order to

fulfil a set of requirements that has been identified as important in order for VR and real-time

visualization to become an everyday used tool for design and communication during the

building design process. Along that path, three new technical solutions have been developed:

• An efficient cells- and portals culling system that is automatically realized from BIM-

data.

• An efficient approach for integrating occlusion culling and hardware-accelerated

geometry instancing.

• An efficient single-pass stereo rendering technique based on hardware-accelerated

geometry instancing.

The final system – BIMXplorer – has been evaluated using several BIMs received from real-

world projects. Regarding rendering performance, navigation interface and the ability to

support fast design iterations, it has been shown to have all the needed properties in order to

function well in practice. To some extent this can also be considered formally validated, as the

system is already in active use within both industry and education.

For future work there are several different directions possible. For instance, when considering

ways to improve rendering performance there is still much work to be done within the

following areas:

 Spatial hierarchy The culling efficiency is inherently dependent on how well the

 spatial hierarchy can represent the 3D scene with respect to occluding and enclosing

 objects, such as walls and floors. As of now, the bounding volume hierarchy (BHV) is

 constructed based on surface area and do not take into account any natural

 containment, e.g. due to occluding walls or floors. It would be interesting to see how

 the spatial hierarchy could be improved by taking advantage of any space objects –

 e.g. IfcSpace or Rooms in Revit – present in the model. Interior objects, e.g. furniture,

 could then be clustered per space object before feeding them to the BVH construction

 procedure.

40

 Another way to improve the spatial hierarchy and, hence, the culling efficiency, would

 be to take advantage of oriented bounding boxes (OBB) instead of axis-aligned ones

 (AABB). As OBBs typically provides a much “tighter” fit around objects, the number

 of visibility tests that provides false negatives would decrease. However, instead of

 creating “true” oriented bounding boxes, it would be interesting to explore the concept

 of building-oriented bounding boxes. With the interior and exterior walls of most

 buildings following a local, orthonormal coordinate frame, it makes much sense to

 then orient all of the 3D scenes bounding boxes accordingly. This would then prevent

 many situations where object bounds intersect walls and becomes (falsely) detected as

 visible from the other side. Even if the local coordinate frame is not explicitly known,

 it should be straightforward to calculate it based on the normals of the wall geometry

 weighted against its surface area for all the walls contained in a BIM.

 Occlusion culling The biggest disadvantage of using occlusion queries is the latency

 introduced by waiting for the result of the queries to return to the CPU-side of the

 application. CHC++ hides this latency fairly efficient by rendering previously visible

 objects during the wait-time, but it is still not an optimal solution. The readback of

 data from the GPU is required mainly because of the GPUs inability to feed itself with

 draw calls (Rákos, 2012). However, with recent extensions to the OpenGL API this

 restriction has been relaxed and it has been shown possible to implement an occlusion

 culling system mainly on the GPU (Boudier and Kubisch, 2015). Further exploring

 these features thus represents an obvious direction for future research.

 Level-of-detail (LOD) As BIMs become even more detailed and several of them are

 to be visualized together, the concept of LOD needs to be considered in order to

 reduce the sheer amount of triangles that has to be rendered. Ultimately, in order to

 provide a scalable solution, this has to be done both locally, i.e. per object, as well as

 globally, i.e. for a whole facade or a whole building. However, neither of these tasks is

 trivial to address automatically – especially if it also has to be done in a short amount

 of time (Luebke et al., 2002; Arroyo Ohori, 2016). When considering per-object

 simplification it makes sense to initially focus on furniture and other interior

 equipment, as these types of objects often contain an excessive amount of triangles. A

 good starting point would probably be to first explore and evaluate the results that can

 be achieved by simplifying individual interior objects using edge collapse

 (Luebke et al., 2002; Melax, 1998).

Going beyond that of acceleration techniques, there is also much room for further research

and development regarding suitable interaction interfaces for different types of applications –

e.g. design review or information extraction on-site – as well as user-studies related to

perception and spatial understanding with modern HMDs. Moreover, when looking at these

things in a larger context, it would be interesting to see to what degree an integrated use of

VR will affect the design process and, ultimately, the buildings that are a result of it.

41

References

Akenine-Möller, T., Haines, E., & Hoffman, N. (2008). Real-time rendering. CRC Press.

Arnaud, R., & Barnes, M. C. (2006). COLLADA: sailing the gulf of 3D digital content

creation. CRC Press.

Arroyo Ohori, K. (2016) Higher-dimensional modelling of geographic information. PhD-

thesis, Delft University of Technology. Delft, Netherlands.

Barfield, W., Baird, K. M., & Bjorneseth, O. J. (1998). Presence in virtual environments as a

function of type of input device and display update rate. Displays, 19(2), 91-98.

Bartz, D., Meißner, M., & Hüttner, T. (1998). Extending graphics hardware for occlusion

queries in OpenGL. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop

on Graphics hardware (pp. 97-ff). ACM.

Bouchlaghem, D., Shang, H., Whyte, J., & Ganah, A. (2005). Visualisation in architecture,

engineering and construction (AEC). Automation in construction, 14(3), 287-295.

Boudier, P., Kubisch, C. (2015), GPU-driven large scene rendering, Presentation at the GPU

Technology Conference (GTC 2015), San Jose, CA, USA.

Brännström, E. och Ljusteräng, F. (2016) VR och VR-glasögon inom byggbranschen.

Chalmers University of Technology (Examensarbete - Institutionen för bygg- och miljöteknik,

Chalmers tekniska högskola, nr: BOMX03-16-08).

buildingSMART, I. F. C. (2007). 2x Edition 3 Technical Corrigendum 1. International

Alliance for Interoperability, URL: http://www. buildingsmart-tech.

org/ifc/IFC2x3/TC1/html/index. htm.

Bullinger, H. J., Bauer, W., Wenzel, G., & Blach, R. (2010). Towards user centred design

(UCD) in architecture based on immersive virtual environments. Computers in Industry,

61(4), 372-379.

Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology (Vol. 1). John Wiley & Sons.

Cohen-Or, D., Chrysanthou, Y. L., Silva, C. T., & Durand, F. (2003). A survey of visibility

for walkthrough applications. IEEE Transactions on Visualization and Computer Graphics,

9(3), 412-431.

Claypool, K. T., & Claypool, M. (2007). On frame rate and player performance in first person

shooter games. Multimedia systems, 13(1), 3-17.

42

Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., & Hart, J. C. (1992). The

CAVE: audio visual experience automatic virtual environment. Communications of the ACM,

35(6), 64-73.

Dalton, B. and Parfitt, M. (2013). Immersive visualization of building information models.

Design Innovation Research Center Working Paper, 6(1.0).

Dubler, C. R., Messner, J., & Anumba, C. J. (2010). Using lean theory to identify waste

associated with information exchanges on a building project. In Proceedings Construction

Research Congress/ASCE Conference.

Dudash, B. (2007). Animated crowd rendering. GPU Gems, 3, 39-52.

Dvorak, J., Hamata, V., Skacilik, J., & Benes, B. (2005), Boosting up architectural design

education with virtual reality, CEMVR, 5, 95-200.

Dörner, R., Lok, B., & Broll, W. (2011). Social Gaming and Learning Applications: A

Driving Force for the Future of Virtual and Augmented Reality?. In Virtual Realities (pp. 51-

76). Springer Vienna.

Eastman, C. M. (1999). Building product models: computer environments, supporting design

and construction. CRC press.

Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM handbook: A guide to

building information modeling for owners, managers, designers, engineers and contractors.

John Wiley & Sons.

Funkhouser, T. A., & Séquin, C. H. (1993). Adaptive display algorithm for interactive frame

rates during visualization of complex virtual environments. In Proceedings of the 20th annual

conference on Computer graphics and interactive techniques (pp. 247-254). ACM.

Garland, M., & Heckbert, P. S. (1997). Surface simplification using quadric error metrics. In

Proceedings of the 24th annual conference on Computer graphics and interactive techniques

(pp. 209-216). ACM Press/Addison-Wesley Publishing Co.

Giegl, M., & Wimmer, M. (2007). Unpopping: Solving the Image-Space Blend Problem for

Smooth Discrete LOD Transitions. In Computer Graphics Forum (Vol. 26, No. 1, pp. 46-49).

Blackwell Publishing Ltd.

Greenwood, D., Horne, M., Thompson, E., Allwood, C. M., Wernemyr, C., Westerdahl, B.

(2008), Strategic Perspectives on the Use of Virtual Reality within the Building Industries of

Four Countries, Architectural Engineering and Design Management, Vol. 4, No. 2, pp. 85-98.

43

Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design science research for

maximum impact. MIS quarterly, 37(2), 337-355.

Göttig, R., Newton, J., & Kaufmann, S. (2004). A Comparison of 3D Visualization

Technologies and their User Interfaces with Data Specific to Architecture. In Recent

Advances in Design and Decision Support Systems in Architecture and Urban Planning (pp.

99-111). Springer Netherlands.

Halaby, J. (2015), Simulating Presence: BIM to Virtual Reality, Presentation at BAYA:

Emerging Technologies in Architecture, 2015, San Francisco, CA.

Hasan, M. S., & Yu, H. (2015). Innovative developments in HCI and future trends. In 21st

IEEE, International Conference on Automation & Computing (ICAC 2015), University of

Strathclyde, Glasgow, UK.

Hermund, A., Klint, L. (2016) VIRTUAL AND PHYSICAL ARCHITECTURAL

ATMOSPHERE. In Proceedings of the International Conference on Architecture, Landscape

and Built Environment (ICALBE 2016), Kuala Lumpur, Malaysia, pp. 3-4

Herwig, A., & Paar, P. (2002). Game engines: tools for landscape visualization and planning.

Trends in GIS and virtualization in environmental planning and design, 161, 172.

Hettinger, L. and Riccio, G. (1992), Visually induced motion sickness in virtual

environments, Presence 1(3), pp. 306–310.

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian journal of

information systems, 19(2), 87-92.

Hevner, A., March, S., Park, J., and Ram, S. (2004), Design Science in Information Systems

Research, MIS Quarterly (28:1), pp. 75-105.

Heydarian, A., Carneiro, J. P., Gerber, D., Becerik-Gerber, B., Hayes, T., & Wood, W.

(2015). Immersive virtual environments versus physical built environments: A benchmarking

study for building design and user-built environment explorations. Automation in

Construction, 54, 116-126.

Hillaire, S. (2012). Improving Performance by Reducing Calls to the Driver. OpenGL

Insights, A K Peters/CRC Press, 353-364.

Johannesson, P., & Perjons, E. (2014). An introduction to design science. Springer.

Johansson, M. (2010). Towards a Framework for Efficient Use of Virtual Reality in Urban

Planning and Building Design. Licentiate thesis, Chalmers University of Technology, Sweden

44

Jongeling, R., Asp, M., Thall, D., Jakobsson, P., & Olofsson, T. (2007). VIPP: Visualization

in Design and Construction. Luleå: Luleå tekniska universitet. (Technical report / Luleå

University of Technology; Nr 2007:07).

Jörnebrant, F. and Tomsa, P. (2015) The BIM Head Mounted Display as an integrative part of

project phases A case study of applying new technologies in a construction project. Göteborg

: Chalmers University of Technology (Examensarbete - Institutionen för bygg- och

miljöteknik, Chalmers tekniska högskola, nr: 2015:89).

Kasik, D. J., Troy, J. J., Amorosi, S. R., Murray, M. O., & Swamy, S. N. (2002). Evaluating

graphics displays for complex 3d models. IEEE Computer Graphics and Applications, 22(3),

56-64.

Kjellin, A. (2008), Visualizing Dynamics –The Perception of Spatiotemporal Data in 2D and

3D. Uppsala: Acta Universitatis Upsaliensis; Digital Comprehensive Summaries of Uppsala

Dissertations from the Faculty of Social Sciences.

Kjems, E. (2005), VR applications in an architectural competition: Case: House of Music in

Aalborg. /. I: Realitat Virtual a l'Arquitectura i la Construcció : Taller 2. Barcelona : Khora ll,

pp. 47-58.

Kreutzberg, A. (2015). Conveying Architectural Form and Space with Virtual Reality.

Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology,

Vienna, Austria, 16-18 September 2015, pp. 117-124

Kuechler, W., & Vaishnavi, V. (2008). The emergence of design research in information

systems in North America. Journal of Design Research, 7(1), 1–16.

Liu, Y., Lather, J., & Messner, J. (2014). Virtual Reality to Support the Integrated Design

Process: A Retrofit Case Study. in Computing in Civil and Building Engineering ASCE.

Luebke, D., & Georges, C. (1995). Portals and mirrors: Simple, fast evaluation of potentially

visible sets. In Proceedings of the 1995 symposium on Interactive 3D graphics (pp. 105-ff).

ACM.

Luebke, D., Reddy, M., Cohen, J., Varshney, A., & Watson, B., Huebner. R. (2002) Level of

detail for 3D graphics, Elsevier.

Maller, A. (2011), Autodesk Revit Links, Groups, and Documentation: How to Make It

Really Work!, Presentation at Autodesk University 2011, Las Vegas, Nevada.

March, S. and Smith, G. (1995), Design and natural science research on information

technology, Decision Support Systems, Vol. 15, No. 4, pp. 251-266.

45

Mattausch, O., Bittner, J., & Wimmer, M. (2008). Chc++: Coherent hierarchical culling

revisited. In Computer Graphics Forum (Vol. 27, No. 2, pp. 221-230). Blackwell Publishing

Ltd.

McGuire, M., Mara, M., & Luebke, D. (2012, June). Scalable ambient obscurance. In

Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on High-Performance

Graphics (pp. 97-103). Eurographics Association.

Melax, S. (1998). A simple, fast, and effective polygon reduction algorithm. Game Developer,

11, 44-49.

Merschbrock, C., Lassen, A., Tollnes, T., Munkvold, Bjørn, E. (2016). Serious games as a

virtual training ground for relocation to a new healthcare facility. Facilities. Vol. 34.

Mobach, M. (2008), Do virtual worlds create better real worlds?, Virtual Reality, Vol. 12, No.

3, pp. 163-179.

Modjeska, D. and Chignell, M. (2003), Individual Differences in Exploration Using Desktop

VR, Journal of the American Society for Information Science and Technology, Vol. 54, No.

3, pp. 216-228.

Pelosi, A. W. (2010). Obstacles of utilising real-time 3D visualisation in architectural

representations and documentation. In Proceedings of the 15th International Conference on

Computer Aided Architectural Design Research in Asia/Hong Kong (Vol. 7, pp. 391-400).

Piirainen, K. A., & Gonzalez, R. A. (2014). Constructive synergy in design science research:

a comparative analysis of design science research and the constructive research approach.

Liiketaloudellinen Aikakauskirja, 3-4.

Rákos, D. (2012). Programmable Vertex Pulling. OpenGL Insights, A K Peters/CRC Press,

293-300.

Reddy, M. (1997). The effects of low frame rate on a measure for user performance in virtual

environments. University of Edinburgh, Computer Systems Group.

Roupé, M., Johansson, M., Viklund Tallgren, M., Jörnebrant, F. och TOMSA, P. (2016)

Immersive visualization of Building Information Models, Proceedings of the 21st

International Conference of the Association for Computer-Aided Architectural Design

Research in Asia (CAADRIA 2016) p. 673-682

Rubino, C., & Power, J. (2008). Level design optimization guidelines for game artists using

the epic games: Unreal editor and unreal engine 2. Computers in Entertainment (CIE), 6(4),

55.

46

Shi, Y., Ferlet, E., Crawfis, R., Phillis, P., & Durano, K. (2015). 3D Hospital: Design and

implement quest-based game framework for transitional training. In Computer Games: AI,

Animation, Mobile, Multimedia, Educational and Serious Games (CGAMES), 2015 (pp. 119-

125). IEEE.

Shiratuddin, M. F., & Fletcher, D. (2006, August). Southern Miss’ Innovation and

Commercialization Park: Development of a Large Scale Real-Time Virtual Reality

Environment. In Proceedings of 6th International Conference on Construction Applications of

Virtual Reality.

Steel, J., Drogemuller, R., & Toth, B. (2012). Model interoperability in building information

modelling. Software & Systems Modeling, 11(1), 99-109.

Sutherland, I. (1965), Ultimate display, in W.A. Kalenich (ed), Proceedings of IFIP Congress

2, New York, Spartan Books, 506–508.

Sunesson, K., Allwood, C. M., Paulin, D., Heldal, I., Roupé, M., Johansson, M., &

Westerdahl, B. (2008). Virtual reality as a new tool in the city planning process. Tsinghua

Science & Technology, 13, 255-260.

Svidt, K., & Christiansson, P. (2008). REQUIREMENTS ON 3D BUILDING

INFORMATION MODELS AND ELECTRONIC COMMUNICATION–EXPERIENCES

FROM AN ARCHITECTURAL COMPETITION. In CIB W78 25th International

Conference on Information Technology: Improving the Management of Construction Projects

Through IT Adoption, Chile (pp. 231-238).

Vlachos, A. (2015) Advanced VR rendering. Presentation at the Game Developers

Conference 2015, San Francisco, California

Westerdahl, B., Suneson, K., Wernemyr, C., Roupé, M., Johansson, M., & Allwood, C. M.

(2006). Users' evaluation of a virtual reality architectural model compared with the experience

of the completed building. Automation in construction, 15(2), 150-165.

Willmott, J., Wright, L. I., Arnold, D. B., & Day, A. M. (2001). Rendering of large and

complex urban environments for real time heritage reconstructions. In Proceedings of the

2001 conference on Virtual reality, archeology, and cultural heritage (pp. 111-120). ACM.

Wilson, T. (2015) High performance stereo rendering for VR. Presentation at San Diego

Virtual Reality Meetup #3, San Diego, California.

Wloka, M. (2003), Batch, batch, batch: What does it really mean?, Presentation at Game

Developers Conference 2003.

47

Woksepp, S., & Olofsson, T. (2008). Credibility and applicability of virtual reality models in

design and construction. Advanced Engineering Informatics, 22(4), 520-528.

Yan, W., Culp, C., & Graf, R. (2011). Integrating BIM and gaming for real-time interactive

architectural visualization. Automation in Construction, 20(4), 446-458.

Yoon, S. E., Gobbetti, E., Kasik, D., & Manocha, D. (2008). Real-time massive model

rendering. Synthesis Lectures on Computer Graphics and Animation, 2(1), 1-122.

 Paper I

Efficient Real-Time Rendering of
Building Information Models

M. Johansson and M. Roupé

Department of Civil and Environmental Engineering
Chalmers University of Technology, Göteborg, Sweden

Abstract - A Building Information Model (BIM) is a powerful
concept, since it allows both 2D-drawings and 3D-models of
buildings or facilities to be extracted from the same source of
data. Compared to a general 3D-CAD model a BIM is a
different kind of representation, since it defines not only
geometrical data but also information regarding spatial
relations and semantics. However, because of the large
number of individual objects and high geometric complexity,
3D-data obtained from a BIM are not easily used for real-
time rendering without further processing. In this paper we
present a culling system specifically designed for efficient
real-time rendering of BIM’s. By utilizing the unique
properties of a BIM we can form the required data structures
without manual modification or expensive preprocessing of
the input data. Using hardware occlusion queries together
with additional mechanisms based on specific BIM-data, the
presented system achieves good culling efficiency for both
indoor and outdoor cases.

Keywords: 3D graphics, BIM, real-time rendering

1 Introduction
 In the field of architecture and building design a concept
known as Building Information Model (BIM) is now
becoming a reality. Using modern modeling tools, such as
ArchiCAD or Autodesk Revit, the content produced by
architects has evolved from simple 2D-drawings to
parametric, object-oriented 3D-models (Figure 1). Compared
to a general 3D-CAD model a BIM is a different kind of
representation, since it defines not only geometrical data but
also information regarding spatial relations and semantics. Its
purpose is to represent any building or facility in detail and to
allow the extraction of both 2D-drawings and 3D-models. In
theory, this makes it possible to use one source of data for
2D-drawings, offline rendering and real-time rendering.
However, when used for real-time rendering, many polygonal
datasets extracted from BIM’s are still too large in order to
achieve interactive frame rates. A common solution is to
introduce a culling mechanism to reject objects that do not
contribute to the final rendered image. As different culling
algorithms have different strengths and weaknesses, the
choice of one is highly dependent on the type of scene that is
to be rendered. For indoor architectural models, that naturally
exhibits a lot of occlusion, a cell-and-portal partitioning [1] is

Figure 1: A BIM created in Autodesk Revit. 2D-plans,
sections and 3D-models are maintained and extracted using a

single database.

often used. By defining cells and portals that connect the
cells, the scene is traversed starting with the cell containing
the current viewpoint. An adjacent cell is processed if any
portal leading into it is found to be visible. Although shown
to be efficient, the cell-and-portal partitioning usually require
manual interaction in order to be formed. For the purpose of
quickly visualizing different proposals during the design of a
building or facility, this is an unwanted step. Work has been
done to enable automatic creation of the cell-and-portal
partitions [2, 3], but the quality of the result when applied to a
detailed building model remains unknown. Even if the
creation of the partition could be solved the exterior
visualization of a building model still remains an additional
challenge. As the portal culling procedure was initially
developed for indoor walkthroughs, it may not be efficient
enough when used for an outdoor case. However, previous
attempts to solve this problems where restricted by the
properties of a general 3D model. With a BIM, information
regarding spatial relations and semantics is accessible, which
enables the problem to be treated differently.

 In this paper we present a culling system specifically
designed for efficient real-time rendering of BIMs. The
system extends previous cells-and-portals visibility methods
and by utilizing the unique properties of a BIM the required
data structures can be formed without any manual interaction
or expensive preprocessing. Hardware occlusion queries are
used for portal visibility detection, and together with
additional mechanisms based on BIM-data we achieve good
culling efficiency for both indoor and outdoor cases.

 The rest of the paper is organized as follows: In Section
2 related work is reviewed. Section 3 describes the IFC
building model which is used as an exchange file format by
BIM authoring applications. Section 4 presents our culling
system in-depth and in Section 5 we present and discuss the
results obtained from two test models. Finally, Section 6
concludes the paper.

2 Related work
 In order to accelerate view frustum culling, Clark et al.
[4] presented bounding volume hierarchies (BVH), where the
scene to be rendered is organized into a hierarchical tree-
structure with groups and sub-groups encapsulated by
bounding volumes. Using this data-structure, entire branches
of a tree can be rejected if any parent group is found to be
outside the current view frustum.

 Objects or geometries that pass the view frustum culling
test can still be occluded by any other object or geometry in
the scene. This can be detected using either object- or image-
space methods. In [5] Hudson et al. presented the concept of
occlusion culling with planar occluders, where a shadow
frustum is constructed for each of the selected occluders.
These frusta are then used to detect the invisible regions of
the spatial hierarchy. This technique was later refined by
Schaufler et al. [6] with occluder fusion, where several
overlapping occluders were treated as a single occluder in
order to reduce the number of individual tests.

 The support for hardware occlusion queries (HOQ) [7]
on Graphics Processing Units (GPUs) has led to a number of
general occlusion culling algorithms operating in image-
space [8,9,10]. With hardware occlusion queries, the GPU
can be used to query the number of pixels that will end up on
screen when rendering a specific set of geometries. This way,
proxy-geometries can be used to test if any occlusion is
present before the actual geometry is rendered. However, the
technique will put additional stress on the GPU and can
actually decrease rendering performance in scenes with a low
number of natural occluders [11]. As of today, the most
promising algorithm utilizing HOQ appears to be the
Coherent Hierarchical Culling [8] introduced by Bittner et al.
which exploits spatial and temporal coherence to reduce the
overhead and latency of HOQ.

 Indoor environments, such as those found in
architectural walkthroughs, naturally exhibit a lot of
occlusion. By extending the cells-and-portals technique
introduced by Jones [1], Airey [12], and later Teller [2], used
this feature as an advantage when precomputing from-region
(cell-to-cell) visibility. Instead of precomputing a potentially
visible set (PVS) from each cell, Luebke and George [13]
proposed a from-point visibility calculation performed online.
The method recursively traverses cells and for every visible
portal the current view frustum is reduced to the screen-space
bounding box of the portal geometry before traversing the

adjacent cell. Whether performed online or offline, the portal-
based algorithms mainly relies on the definition of cells and
portals and much research has been focused on automating
the creation-process by the use of offline calculations [2, 14,
15, 16, 17]. Work has also been done in order to extend the
cells-and-portals visibility method to handle outdoor
environments. In [3], Lerner et al. presents a method to
automatically create a cells-and-portals partitioning for urban
scenes. However, their method is only applicable on simple
models where building facades are represented as opaque
vertical faces. As such, it cannot handle detailed building
models where walls, windows and doors are represented as
actual 3D-objects.

3 The IFC building model
 The Industry Foundation Classes (IFC) was designed to
provide a universal basis for the information sharing over the
whole building lifecycle [18], and is the de facto standard for
representing Building Information Models (BIM). It differs
from general 3D-file formats, such as 3D Studio or
COLLADA [19], in that it represents a building or facility
with specific (virtual) building objects instead of pure
geometrical entities. The IFC scheme supports a wide variety
of buildings objects, such as IfcWall, IfcDoor, IfcWindow,
IfcSlab and IfcRoof together with an unlimited set of
properties connected to each object. Using the IfcRelation
feature, any object can also relate to other objects, making it
possible to form constraints between building parts. Another
major difference between IFC and general 3D-file formats is
the representation of space. Every instance of an IFC-object
must belong to a spatial context. Special space-enclosing
structures are the sites (IfcSite), buildings (IfcBuilding),
storeys (IfcBuildingStorey) and rooms (IfcSpace). Any other
spatial features, such as corridors or stair shafts are
represented with the general IfcSpace definition.
Additionally, any window or door placed in a wall results in
an opening element (IfcOpening) that represents the cut-out
in the affected wall. In Figure 2, the concept of spaces and
openings is illustrated for a simple building model. According
to the specification both openings and space-enclosing
objects are defined as closed polyhedrons, which can be non-
convex.

Figure 2: Geometries for spaces and openings (in red), as
described by the IFC building model.

 For the purpose of visibility determination the IFC
building model has several advantages over general 3D-file
formats. The clear definition of spaces and openings are
important features as it enables information about the
surroundings at any location. Together with specific
knowledge regarding each objects properties and function
within the building, all the necessary information to form a
cells-and-portals structure without expensive pre-processing
is accessible.

4 A culling system suitable for Building
Information Models

 The major components of our proposed system are
shown in the UML diagram in Figure 3. By using the
definition of spaces (cells) and openings (portals) in an IFC-
file the structure can be formed during load-time without any
additional calculations or preprocessing. The extraction of
data from the IFC-file is performed in two steps; first we
extract every individual object, second we perform an
organizing step where inter-object connections are assigned
according to the relation data.

Figure 3: UML-diagram describing the major components of
our system.

 As seen in Figure 3, our system maintains much of the
high-level structure defined by the IFC building model. The
actual building object is composed of exterior walls, roofs
and slabs and also has access to all the cells contained in the
building. Further on, exterior walls, windoor sets, windoors
and portals form a hierarchy where any portal is connected to
either one or two cells. Finally, cells have access to its
contained and enclosing objects. The term windoor refers to
either a door or a window and by grouping those according to
the cells that they connect to, windoor sets are formed.

 Using this structure it is possible to perform seamless
traversals starting either from the outside of the building or
from a specific cell in the building. However, the high-level
design itself does not guarantee the effectiveness of the
culling process. In the remaining of this section we therefore

present additional mechanisms that enable the system to
behave performance effective independent of view-point
location.

4.1 Use of hardware occlusion queries to
detect portal visibility

 In a cell and portal system, portal visibility detection
becomes most efficient when cells are defined as convex
volumes. This feature guarantees that any geometry
representing the cells boundary never occlude any portal
connected to the cell. However, when using non-convex cells
a portal is no longer guaranteed to be visible if it intersects
the current view frustum. The situation is illustrated in Figure
4 for an L-shaped room.

Figure 4: Undetected portal occlusion due to non-convex

room shape.

 The portal in Figure 4 is occluded but it will still be
processed because it intersects the current view frustum. In
order to reduce the number of unnecessary portal traversals
the presented system takes use of hardware occlusion queries
to detect portal visibility. Although this could have been
solved by decomposing the cells geometries into convex
regions, hardware occlusion queries offers additional benefits
and require no preprocessing of the input data. By issuing a
query when rendering the portal geometry we transfer the
visibility detection to the GPU. This has several advantages:

• Portals can have arbitrary shapes.
• Portal occlusion will be accurately detected in non-

convex cells.
• Portal occlusion due to other objects (furniture, book-

shelf) in a specific cell will be detected.

 Still, the use of hardware occlusion queries comes with
restrictions and potential problems. The occlusion query
returns the number of pixels that passes the depth-test, which
then denotes whether an object is occluded or not. For this to
be accurate, occluding objects must be rasterized before the
object to test is rasterized. Although the actual test is fast, its
result is not immediately available due to the delay between
issuing a query and the actual processing on the GPU [8]. In

essence, this means that requesting the query result directly
after issuing it may stall the graphics pipeline.

 In order to overcome these restrictions we always render
portal geometries last every frame and then we check the
results of the queries in the next frame. This effectively
delays portal visibility detection by one frame which could
lead to a popping behavior during fast viewpoint movement.
However, in our case this potential problem is reduced
because the actual transparent region of a general window
will always be slightly smaller than the test-geometry due to
the frame of the window (This is similar for an opened door).
Although this has not been detected in our tests, the case of
popping behavior due to the portal detection being one frame
behind could always be reduced or eliminated by scaling the
test-geometry slightly in order to detect its visibility earlier.

4.2 The indoor case

 When the viewpoint is located inside the building our
system behaves like a traditional cells-and-portals culling
system with the main difference that hardware occlusion
queries are used for visibility detection of portals. For every
visible portal the current view frustum is reduced to the
screen-space bounding box of the portal geometry before
traversing the adjacent cell. The pseudo-code in Figure 5
illustrates the portal traversal.

Portal::OnIntersectingFrustum(visibleCollector) {
 if(_isBeingTraversed)
 return;

 _isBeingTraversed = true;

 if(_hasPendingQuery)
 if(IsOccluded(_portalMesh.getQueryId())
 _visible = false;
 visibleCollector.addOccludeeToRenderList(_portalMesh);
 _hasPendingQuery = true;
 else
 _visible = true;
 BoundingBox bb = _portalMesh.getBB();
 visibleCollector.pushScreenSpaceOpening(bb);
 if(has_cell_1)
 _cell_1.OnIntersectingFrustum(visibleCollector);
 if(has_cell_2)
 _cell_2.OnIntersectingFrustum(visibleCollector);
 else
 visibleCollector.traverseRoot();

 visibleCollector.popScreenSpaceOpening();
 visibleCollector.addOccludeeToRenderList(_portalMesh);
 _hasPendingQuery = true;
 else
 visibleCollector.addOccludeeToRenderList(_portalMesh);
 _hasPendingQuery = true;
 if(_visible)
 //Narrow frustum and traverse cell(s) as above

 _isBeingTraversed = false;
}

Figure 5: Pseudo-code illustrating the portal traversal when

HOQ are used for visibility detection.

 Depending on building layout and location of doors and
windows large objects can sometimes be visible through
more than one portal. In order to not send these objects to the
renderer more than once a frame stamp is used.

4.3 The outdoor case

 When the viewpoint is located outside the building a
large number of portals can be intersecting the view frustum
at the same time. Even if many of them turn out to be
occluded they still need to be tested for visibility. This can
mean processing a lot of queries. However, our building
representation enables additional optimizations to be
performed in order to efficiently detect portal visibility.

 Back-wall culling. Inspecting a building from the
outside leads to an important observation – at every exterior
view-point we choose, there will always be exterior walls that
are not directly visible.

Figure 6: Exterior walls in red are facing away from the
viewpoint and are considered back-wall culled.

 As seen in Figure 6, several of the exterior walls are
facing away from the viewpoint wherever we are located.
When a roof or slab is present, these walls will not be directly
visible from the outside (they may be visible through a cell,
but this will be handled by the cell traversal). The concept is
similar to back-face culling (but for a complete object) and
requires the exterior side of the wall to be known. The
information is not directly accessible from the IFC-file, but
can be calculated. A wall object, as described according to
the IFC specification, also has a polyline representation
describing the centerline of the wall. The centerline is used to
create two rays, perpendicular to the wall. One of these rays
will intersect the cells mesh and therefore denote the interior
side of the wall. The other one is then used as the exterior
side direction.

 Hierarchical traversal. The back-wall culling
technique is especially powerful for a building with convex
footprint as it enables fast rejection of every non-visible
exterior wall. For a building with non-convex footprint,
however, front-facing exterior walls can still be occluded.
Because of this, the building hierarchy is used to optimize the
visibility test when the viewpoint is located outside the
building. The procedure is similar to certain parts of the CHC

algorithm [8], where visibility changes are propagated up-
and downwards in the hierarchy. Unless any windoor sets has
been classified as visible, front-facing exterior walls are
always rendered with an occlusion query. The result of the
query will indicate whether the wall should continue testing
for visibility in the next frame or if the tests should be
performed at a lower level in the hierarchy. In Figure 7,
pseudo-code for selected components of our system illustrates
the hierarchical traversal. For curtain walls and frameless
windows the procedure becomes slightly different and could
use an enlarged windoor bounding box or the portal geometry
instead.

 Reuse of visibility classification. Although the
hierarchical traversal optimizes the process of detecting
visible portals, a situation could still arise when many portals
are in fact visible. Repeatedly testing these portals for
visibility every frame is an unnecessary waste of queries as
many visible portals are likely to stay visible over a period of
time. Therefore, when a portal is found to be visible it is
considered to stay visible for a number of frames. A random
offset value is used to schedule the next query. This way, a
portal visible in frame n will only be tested for visibility in
frame n + ro, where ro is a random offset value. For our test
scenes, where the facades typically contain a lot of windows,
we have used a random value between 1 and 50 for ro.

4.4 Rendering

 During traversal, objects are not directly sent to the
renderer, but instead placed in different queues. We use three
queues:

• DrawQueue – Objects that has been classified as
visible are placed in this queue.

• DrawAndTestQueue – Objects that should be tested
for visibility using the actual object representation are
are placed in this queue.

• TestQueue – Objects that should be tested for visibility
using a proxy-representation are placed in this queue.

 After the full traversal has been performed, the different
queues are sorted based on material/shader and then sent to
the renderer in the above order. This simple procedure
minimizes costly state changes and assures that occludees are
always rendered after any potential occluders.

5 Results
 We have tested our proposed system on two different
Building Information Models (see Figure 8); one ten story
building with a rectangular footprint (5,684 objects and
9,570,486 triangles) and one three story building with a U-
shaped footprint (3,489 objects and 4,845,090 triangles).
Both tests were conducted on a laptop with a 2.16 GHz Intel
Core CPU, 2GB of memory and a Ge-Force Go 7950 GTX
graphics card. The screen resolution was set to 1920 x 1200
pixels. The models were created using Autodesk Revit
Architecture 2009 and exported to the IFC-file format

Building::OnIntersectingFrustum() {
 for(every exterior Wall w)
 if(w intersects frustum AND NOT back-wall culled)
 w.OnIntersectingFrustum();
}

Wall::OnIntersectingFrustum() {
 if(any WindoorSet is visible)
 Wall::Render();
 for(every WindoorSet ws intersecting frustum)
 ws.OnIntersectingFrustum();
 else
 if(hasPendingQuery())
 if(isOccludedBasedOnQuery())
 for(every WindoorSet ws intersecting frustum)
 ws.SetToInvisible();
 Wall::RenderWithQuery();
 else
 Wall::Render();
 for(every WindoorSet ws intersecting frustum)
 ws.OnIntersectingFrustum();
 else
 Wall::RenderWithQuery();
}

WindoorSet::OnIntersectingFrustum() {
 if(any Windoor is visible)
 for(every Windoor wd intersecting frustum)
 wd.OnIntersectingFrustum();
 else
 if(hasPendingQuery())
 if(isBoundingBoxOccludedBasedOnQuery())
 for(every Windoor wd intersecting frustum)
 wd.SetToInvisible();
 _parentWall.CollectChildrenVisibility();
 else
 for(every Windoor wd intersecting frustum)
 wd.OnIntersectingFrustum();
 _parentWall.CollectChildrenVisibility();
 else
 WindoorSet::RenderWithQuery();
}

Windoor::OnIntersectingFrustum() {
 if(_portal is visible)
 Windoor::Render();
 _portal.OnIntersectingFrustum();
 else
 if(hasPendingQuery())
 if(isOccludedBasedOnQuery())
 _portal.SetToInvisible();
 _visible=false;
 _parentWindoorSet.CollectChildrenVisibility();
 else
 _visible=true;
 Windoor::Render();
 _parentWindoorSet.CollectChildrenVisibility();
 _portal.SetToVisible();
 _portal.OnIntersectingFrustum();
 else
 if(_visible)
 Windoor::Render();
 _portal.OnIntersectingFrustum();
 else
 Windoor::RenderWithQuery();
 _portal.SetToVisible();
 _portal.OnIntersectingFrustum();
}

Figure 7: Pseudo-code for selected components illustrating

the hierarchical traversal.

Figure 8: Top : The ten story test model. Bottom : The three
story test model.

 For each test scene we have constructed two
walkthroughs; one exterior and one mainly interior. We have
measured the frame times for rendering with view-frustum
culling (VFC) only and our cells-and-portals culling
implementation (CPC). For the VFC case the building
hierarchy is treated as a bounding volume hierarchy.

5.1 Ten story building

 In the exterior walkthrough we start at the ground level
(Figure 8) and fly up above the top level while orbiting
around the building. The second walk-through is a shorter
sequence at the fifth level of the building. Figure 9 presents
the different frame times measured for the walkthroughs of
the ten story building. As can be seen, our implementation is
often more than ten times faster compared to view-frustum
culling. However, more important is the observation that our
implementation is almost always faster than VFC, regardless
of view-point location. The only exception is the special case
when we are located inside the building in front of a window
and looking outside. The scenario appears at four times in the
interior walkthrough and the frame times here are equal or
actually slightly lower when only VFC is used. Still, in such a
case, only a limited number of objects are rendered and
therefore never stress the overall graphics performance.

5.2 Three story building

 In the exterior walkthrough we are following a path
around the building while the view direction is oriented
towards the building. We use the footprint of the building,
offset in the exterior direction, to construct the path. In the
second walkthrough, we follow a path on the second floor of
the building. In the end of the sequence we exit through one

of the windows and fly across the yard to the other side of the
building. Figure 10 presents the frame times measured for the
different walkthroughs of the three storey building. Also in
this case, our implementation is often more than ten times
faster compared to view-frustum culling. Figure 11 shows
how effective our implementation is compared to only VFC.

Figure 9: Frame times for the exterior (top) and interior
(bottom) walkthrough of the ten story building model.

Figure 10: Frame times for the exterior (top) and interior
(bottom) walkthrough of the three story building model.

6 Conclusions
 We have presented a culling system specifically
designed for Building Information Models. By using the
unique properties of a BIM the required cells-and-portals

structure can be formed without manual interaction or
expensive preprocessing of the input data. Compared to only
view-frustum culling, our culling implementation was often
more than ten times faster in our test scenes. This includes
both indoor and outdoor cases. Moreover, our system always
performs better than VFC (except for the special case
explained in Section 5.1). Although cells-and-portals systems
are primarily used for indoor environments, we have shown
that they can be very efficient also in outdoor cases if
additional mechanisms are used. Especially the back-wall
culling technique, as it is an efficient method to quickly reject
large parts of the scene that is hidden to the viewer.

 In the future we want to investigate the possibilities to
enhance the performance of our system even further by using
additional BIM-data to handle level-of-detail management
during rendering.

Figure 11: Comparison of view-frustum culling (top) and our
culling implementation (bottom).

7 References
[1] C.B. Jones, “A New Approach to the ‘Hidden Line’
Problem”, The Computer Journal, vol. 14 no. 3 Aug. 1971.

[2] S.J. Teller, C.H. Sequin, “Visibility preprocessing for
interactive walkthroughs”, Computer Graphics Proceedings
of SIGGRAPH 91, 25(4), 61–69, July 1991.

[3] A. Lerner, D. Cohen-Or, Y. Chrysanthou, “Breaking the
Walls: Scene Partitioning and Portal Creation”, Pacific
Graphics, 2003.

[4] J.H. Clark, “Hierarchical Geometric Models for Visible
Surface Algorithms”, Communications of the ACM, vol. 19,
no. 10, pp.547-554, October 1976.

[5] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, H.
Zhang, “Accelerated Occlusion Culling Using Shadow

Frustra”, in 13th Annual ACM Symposium on Computational
Geometry proc., pp. 1–10, 1997.

[6] G. Schaufler, J. Dorsey, X. Decoret, F.X. Sillion,
“Conservative volumetric visibility with occluder fusion”,
Proceedings of SIGGRAPH 2000, pages 229-238, July 2000.

[7] M. Craighead, “GL NV occlusion query”, OpenGL
extension specification, http://www.opengl.org
/registry/specs/ NV/occlusion_query.txt

[8] J. Bittner, M. Wimmer, H. Piringer, W. Purgathofer,
“Coherent Hierarchical Culling: Hardware Occlusion Queries
Made Useful”, Computer Graphics Forum (Eurographics
2004), 23, 3, pp. 615-624, 2004.

[9] D. Sekulic, “Efficient occlusion culling”, In GPU Gems,
pages 487-503, Addison-Wesley Professional, 2004.

[10] H. Chih-Kang, T. Wen-Kai, C. Cheng-Chin, Y. Mau-
Tsuen, “Exploiting Hardware-Accelerated Occlusion Queries
for Visibility Culling”, IEICE Transactions, 88-A(7), 2007-
2014, 2005.

[11] J. Staffans, “Online Occlusion culling”, Thesis Pro
Gradu, Department of Information Technologies, Faculty of
Technology, Åbo Akademi, Åbo 2006.

[12] J.M. Airey, “Increasing Update Rates in the Building
Walkthrough System with Automatic Model-Space
Subdivision and Potentially Visible Set Calculations”, PhD
thesis, UNC Chapel Hill, 1990.

[13] D. Luebke, C. Georges, “Portals and mirrors: Simple,
fast evaluation of potentially visible sets”, In ACM
Interactive 3D Graphics Conference, Monterey, CA, 1995.

[14] S. Teller, “Visibility computations in densely occluded
environments”, PhD thesis, University of California,
Berkeley, 1992.

[15] D. Meneveaux, K. Bouatouch, E. Maisel, R. Delmont,
“A new partitioning method for architectural environments”,
Journal of Visualization and Computer Animation, 9(4), 195–
213, 1998.

[16] D. Haumont, O. Debeir, F. Sillion, “Volumetric cell-
and-portal generation”, Computer Graphics Forum, 22(3),
303–312, 2003.

[17] S. Lefebvre, S. Hornus, “Automatic cell-and-portal
decomposition”, Technical Report 4898, INRIA, 2003.
http://artis.imag.fr/Publications/2003/LH03/

[18] C.M. Eastman, “Building Product Models: Computer
Environments Supporting Design and Construction, CRC
Press, 1999.

[19] R. Arnaud, M.C. Barnes, “COLLADA: Sailing the Gulf
of 3d Digital Content Creation”, AK Peters Ltd, 2006

.

 Paper II

Automation in Construction 54 (2015) 69–82

Contents lists available at ScienceDirect

Automation in Construction

j ourna l homepage: www.e lsev ie r .com/ locate /autcon
Real-time visualization of building information models (BIM)
Mikael Johansson ⁎, Mattias Roupé, Petra Bosch-Sijtsema
Chalmers University of Technology, Department of Civil and Environmental Engineering, Construction Management, SE-412 96, Gothenburg, Sweden
⁎ Corresponding author. Tel.: +46 31 772 11 32; fax: +

http://dx.doi.org/10.1016/j.autcon.2015.03.018
0926-5805/© 2015 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 17 March 2014
Received in revised form 22 December 2014
Accepted 10 March 2015
Available online 28 March 2015

Keywords:
Building Information Modeling
BIM
Real-time visualization
Real-time rendering
This paper highlights and addresses the complexity and challenges involved in visualizing large and detailed
Building InformationModels (BIM) in real-time. The contribution of thepaper is twofold: (a) an in-depth analysis
of four commonly used BIM viewers in terms of real-time rendering performance and (b) the development and
validation of a prototype BIM viewer specifically designed to allow real-time visualization of large and complex
buildingmodels. Regarding existing BIM viewers our results show that they all share limitations in their ability to
handle large BIMs taken from real-world projects interactively. However, for the same test models our prototype
BIM viewer is able to provide smooth real-time performance without sacrificing visual accuracy. By taking
advantage of an efficient visibility determination algorithm, our prototype viewer restricts rendering efforts to
visible objects only, with a significant performance increase compared to existing BIM viewers as a result.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, there has been a shift from vision to realization
regarding the use of Building Information Models (BIM) within the
architecture, engineering and construction (AEC) industries. Using
modern modeling tools, such as Revit Architecture, ArchiCAD or Tekla
Structures, the content produced by architects, designers and engineers
has evolved from traditional 2D-drawings, sketches andwritten specifi-
cations to parametric, object-oriented 3D-models embedded with
information to describe any building or facility in detail. As a digital
representation of the physical and functional characteristics of a build-
ing, a BIM serves as a repository of information supporting a multitude
of applications along the design and construction processes, including
cost-estimation, energy analysis and production planning [1]. As all of
the data is available in 3D, the concept of BIM further fosters the use
of real-time visualizations as a tool to communicate ideas and share
information among and between different stakeholders in a project.
Currently, several different BIM viewers – both commercial and free –

are available for the purpose of interactive presentations, walkthroughs
and design reviews. During these sessions the interactive 3D visualiza-
tion model becomes a common frame of reference supporting a shared
understanding across interdisciplinary groups. Architects can explore
design options in real-time together with the client while engineers
have the ability to explain the assembly order of complex structural
details for steel workers – all made possible from a single source of data.

However, as BIMs are primarily created to describe a complete build-
ing in detail, many 3D datasets extracted from themprovide a challenge
46 31 772 19 64.
to manage in real-time [2]. A fundamental feature of any type of real-
time rendering system is to provide interactive and real-time updates.
Failure to do so can reduce the benefit or even defeat the purpose of
using the technology in the first place. A too low or fluctuating update
rate will make navigation and other interaction tasks more demanding
and may also cause participants to lose orientation or even feel sick [3].
In order to serve as a platform for efficient communication it is therefore
important that the visualization software can deliver sufficient render-
ing performance to provide a smooth and interactive experience, even
for large and detailed BIMs.

In this paper we highlight and address the complexities and
challenges involved in visualizing large BIMs interactively. The contri-
bution of ourwork is twofold. Firstwe present ourfindings fromanalyz-
ing four commonly used BIM viewers – DDS CAD Viewer, Tekla
BIMsight, Autodesk Navisworks and Solibri Model Viewer – in terms
of real-time rendering performance. We have used several BIMs
received from real-world projects as test cases and show that all viewers
share limitations in their ability to handle large and detailed building
models. Secondly, we have developed a prototype BIM viewer to
evaluate modern algorithms and strategies for real-time rendering of
large 3D-models. Given the limitations found in the existing viewers,
our work aims to contributewith a solution that provides both accuracy
and interactivity, even for large and detailed BIMs.

The remainder of the paper is structured as follows: In the next
section we review related work. Section 3 outlines the methodology
and in Section 4 we present our findings from analyzing the existing
BIM viewers in terms of real-time rendering performance. In Section 5
we motivate the choice of acceleration technique and provide
implementation details for our developed prototype BIM viewer,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2015.03.018&domain=pdf
http://dx.doi.org/10.1016/j.autcon.2015.03.018
http://dx.doi.org/10.1016/j.autcon.2015.03.018
http://www.sciencedirect.com/science/journal/09265805

70 M. Johansson et al. / Automation in Construction 54 (2015) 69–82
together with a performance analysis of it. Finally, Section 6 concludes
the paper.

2. Related work

2.1. BIM and real-time visualization

With the introduction of BIM the use of real-time 3D visualization as
a communication tool has become more accessible. As 3D data can be
extracted directly from the design authoring environment, there is no
longer a need to create a separate 3D model for the sole purpose of
visualization. However, as evident from several recent studies this
development within the AEC field has also introduced new challenges.
Very often models become so large and complex that they exceed the
capacity of the computer which causes problems in viewing themodels
real-time [4–6]. Even for partial models, commonly used software tools
for BIMvisualizationwould either fail to load the 3Ddata or be unable to
render it in real-time [2]. Furthermore, [7] discussed that even the latest
hardware would quickly become overloaded, forcing architects and
designers to ‘wipe out’ parts of the models to be able to work with
them. Given the complexities involved in manipulating large BIMs
interactively, a common work-around today is to split up the main
model in different sub-models [8,9]. Nevertheless, besides restricting
visualization sessions to sub-sets of the complete project, this approach
typically introduces additional modeling work, as not only the initial,
but also any revisions of the model need to be broken up [10]. When
considering handheld and portable devices, similar issues have also
been raised [11]. Given that these devices are typically equipped with
much less powerful hardware the problems in terms of interactivity
naturally become even worse.

However, although the challenge of visualizing large BIMs in real-
time has been recognized, there are still many uncertainties surround-
ing the topic. For instance, none of the studies cited above, except [2],
mentions any information regarding the size of the models that have
been used. Instead of actual figures specifying number of individual
objects or polygons, models are referred to as ‘large’, ‘complex’ or ‘of
high level of detail’. Similar observation can be made regarding
hardware as none of the studies except [11] provide any description of
the systems in use. Thus, without any further specification of model
complexity or hardware present, it becomes very difficult to either
compare the findings or map them to other circumstances. Moreover,
as the actual problems encountered are only vaguely described, it
becomes equally difficult to understand the magnitude of them. With-
out using a suitable metric, such as frame rate, statements like ‘sluggish
model manipulation’ and ‘viewing problems’ are hard to transform into
more concrete knowledge other than that the problem exists. The
currentproblemspacealso seems to be restricted toonly twovariables–
model size and computing power. As such, any limitation in the
software's ability to efficiently utilize available computing power is
not considered. In fact, none of the studies above except [2] and [10]
evenmake any references to the actual software used. Since the studies
mention that a problem exists, but do not specify details concerning
hardware, software, size of models or presentmore explicit information
concerning the problem this article highlights that currently there is a
gap within the AEC research literature. So far, the challenge of visualiz-
ing large BIMs in real-time has merely been identified and is far from
being addressed or even properly analyzed. Although visualizing large
amounts of 3D-data in real-time is an active research topic by itself
[12], there has been surprisingly little attention given to the specific
case of visualizing large BIMs in real-time. Notable exceptions include
recent approaches to take advantage of cloud computing to leverage
sufficient rendering performance on mobile devices [13,14]. However,
although this represents an interesting future research direction,
current solutions either suffer from low image quality [13] or are unable
to provide real-time performance [14]. Recent studies have also
advocated the use of so-called game engines to visualize BIMs in real-
time [15,16]. The arguments put forward is that typical game engines,
besides providing high rendering performance, offer the ability to add
more elements of interactivity to the visual simulation. Still, these
types of demonstrators typically use very small models. As such, they
are not representative for BIMs received from real-life projects. Similar
limitations also apply to the work presented in [17], where specific
BIM-data, such as spaces and room definitions, were utilized in order
to provide high rendering performance for large BIMs. Although the
algorithm developed was successfully evaluated on large test models,
these were not taken from real-life projects. Based on our own observa-
tions, the data required for the algorithm to be fully functional is not
always present in models received from real-life projects.

In the current study we address the observed gap within
the research literature in two ways: first, we report on the current
state within the AEC industries regarding real-time visualization of
BIMs by providing an in-depth analysis of the rendering capacity
offered by commonly used BIM viewers. Secondly, by evaluating and
implementing recently developed algorithms for efficient real-time
rendering of large 3D-datasets in a prototype BIM viewer, we address
the challenge of visualizing large BIMs and provide a report on what is
currently possible using recent technological advancements. In the
following subsection we continue our review of related work, focusing
on our metric for real-time performance – frame rate.

2.2. Importance of interactivity and frame rate

An important property for any type of real-time rendering system is
its ability to maintain a sufficiently high frame rate. Although this
number is highly dependent on the context, there seems to be support
for a threshold of around 15 Hz for a number of different applications.
For simple heading tasks [18], movement and shooting tasks in first
person shooter games [19] as well as overall ease and comfort of
navigation in virtual environments [20], user performance has been
shown to be substantially degraded when the frame rate goes below
15 Hz. When considering everyday use of 3D design and engineering
applications, similar observations have been made. Experiments
conducted at The Boeing Company show that low frame rate decreases
a subjects feeling of continuous motion and that massive model visual-
ization users require at least 16 Hz in order to be considered acceptable
[21,12].

Still, even if 15 Hz represents a minimum frame rate in terms of
acceptable performance or experience, it is generally not considered
to be a preferred or satisfactory level. For many applications 30 or
even 60Hz is often advocated. In [22] 30Hzwas found to be aminimum
satisfactory frame rate for an interactive visualization of a proposed
university research and technology park. Below 30 Hz users would
start to experience lag and imperfect renditions. For other urban and
architectural visualizations similar observations has also been reported
by [23] and [24], where frame rates below 25Hzwere found to produce
a jerky experience where the impression of continuous movement was
lost. The aim for higher frame rates is also apparent in modern 3D
computer games. 30 Hz is often considered minimum in order to give
players a smooth and responsive experience, and game level design
becomes inherently dictated by this target [25].

In line with the above research we chose to define the minimum,
satisfactory and optimal levels of frame rate as 15, 30 and 60 Hz, respec-
tively. For the tests and analysis presented in this paper we will use
these numbers as a metric for interactivity and real-time performance.

2.3. Acceleration techniques for real-time rendering

Even if the performance of central processing units (CPUs) and
graphics processing units (GPUs) has increased tremendously during
the last years there is always an upper limit in the amount of 3D-data
that can be interactively managed by any system out-of-the-box.
Fortunately, a number of acceleration techniques exist that allow us to

Fig. 1. Illustration of different culling techniques (Source: [37]).

71M. Johansson et al. / Automation in Construction 54 (2015) 69–82
go beyond this limit. Following the notation used by [26] and [27], these
techniques can basically be assigned into three categories; pipeline
optimizations, level-of-detail (LOD) and visibility culling (i.e. exclusion
of non-visible geometry). In the following subsections we review each
one of them.

2.3.1. Pipeline optimizations
In order to effectively utilize available hardware an applicationmust

be able to feed the GPU with data and rendering tasks at a sufficiently
high rate. If this is not the case, the application is likely to become
CPU-bound [26,28]. This is a commonly used term to emphasize that
the bottleneck is not the GPU but instead the CPU. In such a scenario
the GPU becomes underutilized and the only way to increase rendering
performance is to either reduce the CPUs workload or spend available
cycles more efficiently. However, depending on the given situation
this is often possible by arranging and processing geometry data in a
different way. One aspect that is considered fundamental for static ge-
ometry is to take advantage of buffer objects to store geometry data
directly in GPU memory [29]. This will allow an application to upload
all geometry data to the GPU once, instead of transferring it from CPU
RAM for every frame. Even for scenes with moderate amount of geom-
etry this can have a huge impact on performance as the burden on both
the CPU and the graphics bus is reduced [30].

Performance may also be further improved by batching together
geometry from several objects in order to reduce the number of draw
calls [28]. This is because each draw call is associated with a fixed
CPU-cost, regardless of size (i.e. number of triangles). By forming larger,
but fewer, objects, the same amount of geometry can be rendered but
with less CPU-cost. For similar reasons it is also often beneficial to sort
objects by material properties before rendering [31]. This is because
changes of the rendering state typically constitute a significant cost at
both the CPU- and GPU-side. By arranging draw order based on the
objects state, the same amount of geometry can be rendered, but with
far less state changes. For 3D scenes with many replicated objects, it is
also possible to reduce CPU overhead by taking advantage of
hardware-accelerated geometry instancing [32]. With this concept,
multiple copies of the same geometry can be rendered with a single
draw call. The actual transformation of each instance is then performed
on the GPU.

However, although these optimizations are efficient per se, their
common characteristic is that they do not reduce the amount of data
that has to be processed by the GPU for every frame. As such, pipeline
optimizations are not indefinitely scalable.

2.3.2. LOD
Compared to pipeline optimizations, a more scalable approach to

consider is LOD. With LOD, the main idea is to reduce the complexity
of a 3D object representation when the object is far away from the
current viewpoint. In such a situation the object becomes small on
screen and a less detailed representation can be sufficient in order to
give the same visual impression. The simplified version of the object is
often created by reducing the number of triangles, replacing geometric
features with textures or a combination of both [33]. Regardless of
simplification strategy the end result is an object that is less stressful
for the GPU to process. However, applying LOD per-object may not
always lead to improved rendering performance. As object-based
simplifications typically do not reduce the number of draw calls, this
will only lead to increased rendering performance if the application
is GPU-bound [34,35]. For CPU-bound scenarios it is therefore
more suitable to consider hierarchical LOD (HLOD), where spatially
coherent objects are simplified together instead of individually [36].
The approach is similar to geometry batching, but also takes into
account level of detail. Individual objects are combined either before
or after simplification and, if applicable, the process can be done
recursively in a hierarchical fashion. When viewed from a distance
multiple objects can then be replaced by a single object that
incorporates less detailed versions of the replaced ones. Compared to
per-object LOD, the benefit of this approach is thus that both object
complexity and number of draw calls are reduced.

2.3.3. Visibility culling
With visibility culling the idea is to improve rendering performance

by only processing geometry that is potentially visible. Often, only a
subset of a complete 3D-dataset is visible from any given view point,
and if an application can quickly reject invisible geometry the overall
performance will be naturally increased. As illustrated in Fig. 1, this
category of acceleration techniques typically includes three different
approaches – view-frustum culling, back-face culling and occlusion culling
[37]. View-frustum culling rejects objects outside the cameras view
frustum, back-face culling rejects polygons that faces away from the
viewer and occlusion culling rejects objects that are hidden by other ob-
jects. Because of their efficiency and straightforward implementations,
both back-face culling and view-frustum culling are present in nearly
every real-time rendering application today. View-frustum culling is
traditionally performed by the application on the CPU and in order to
reduce computational workload visibility testing is not done per-
triangle but instead per-object using a bounding box as proxy geometry.
By arranging the 3D-scene in a spatial data structure, such as a bounding
volume hierarchy, the process can also be further accelerated by
performing the tests hierarchically [38]. In contrast, back-face culling
is almost exclusively performed on the GPU. Because this feature is
implemented in hardware, an application can enable and take advan-
tage of it with a single graphics API call. Occlusion culling, on the other
hand, is a much more complex process as it requires computing how
objects in a 3D-scene affect each other. Although many different
approaches exists, the most commonly used today perform occlusion
tests (either on the GPU or the CPU) by rasterizing a proxy geometry
(e.g. a bounding box that encloses the “real” object) against a z-buffer
that represents scene geometry that is assumed to be, or has been
previously identified as, visible. Based on the result of the occlusion
test with the proxy geometry, the “real” geometry is then rendered. As
occlusion culling can greatly reduce the number of objects that have
to be processed on the GPU, it is a viable acceleration technique for
real-time rendering of building models and will be further discussed
in Section 5.

The common requirementwhen considering culling is that it should
be conservative, i.e. it should not cull (discard) objects that are visible.
However, there are also approaches that are non-conservative, such as
contribution culling [39]. The rationale for contribution culling is that
objects that are small on screen contribute less to the rendered image
and can be removed in order to improve performance. This is typically
implemented by estimating the objects screen-size (in pixels), and if
below a user defined threshold the object is discarded. A more aggres-
sive form of this concept is drop-culling [40], where not only the objects
contribution, but also frame rate, is taken into account. Often based

72 M. Johansson et al. / Automation in Construction 54 (2015) 69–82
on an extended heuristics taking size, screen-size and distance to view-
point into account, low-priority objects are then “dropped-out” in order
to maintain a user defined frame rate. However, besides presenting a
visualization that is incorrect (missing information), this acceleration
technique will typically also produce very distracting visual artifacts.
As object priority becomes different for each view-point, objects will
constantly “pop” in and out during navigation. Because three of our test-
ed viewers were found to use drop-culling as their primary acceleration
technique we will review this aspect in more detail in the following
section.

To conclude our discussion of different acceleration techniques and
to provide a better overview we present all of them together with
their main characteristics in Table 1.
3. Methods and materials

In the study we first analyze and compare the performance of four
existing BIM viewers – DDS CAD Viewer 8.0 and 10.0, Tekla BIMsight
1.9.1, Autodesk Navisworks 2015 and Solibri Model Viewer 9.0. Second-
ly we discuss and relate our developed prototype to these existing BIM
viewers. In order to analyze and compare the different viewers (includ-
ing our own prototype) in terms of real-time rendering performance,
four different BIMs were used. In Fig. 2, the different test models are
rendered in our Prototype viewer. These models were taken from
real-life projects and represent either planned or existing buildings.
All four models (Library, Student house, Hospital, and Hotel) were
created in Autodesk Revit Architecture 2012 and exported to the
Industry Foundation Classes (IFC) file format [41]. Although the Hotel
model contains some structural elements they are primarily architec-
tural models. As such, no Mechanical, Electrical or Plumbing (MEP)
data is present. However, all models except the Hospital contain
furniture and other interior equipment. In Table 2, related statistics for
all models are presented. In this table, the total number of objects (i.e.
windows, doors, walls) as well as triangles contained in each model is
presented. In addition, the total number of geometry batches is present-
ed, where a batch refers to a part of an object (i.e. a typical window has
two batches – one for the frame, and one for the glass).
Table 1
Different acceleration techniques for real-time rendering and their main characteristics.

Acceleration
technique

Pros Cons

VBOs Reduce CPU workload.
Reduce memory transfer
over the bus.

None

Geometry batching Reduce CPU workload. Can decrease culling efficiency.
Hardware instancing Reduce CPU workload. Increase GPU workload. May

complicate culling.
Level-of-detail
(LOD)

Reduce GPU workload. Requires the existence or
(manual) creation of
simplified models.

Hierarchical LOD Reduce CPU and GPU
workload.

Difficult to implement for
general 3D scenes without
manual interaction.

View frustum culling Simple to implement. Reduce
CPU and GPU workload.

None

Back-face culling Simple to activate. Reduce
GPU workload.

None

Occlusion culling Can greatly reduce the number
of triangles that needs to be
rendered. Can reduce both
CPU and GPU workload.

Non-trivial to implement.
Actual speed-up is very
implementation-dependent.

Contribution culling Simple to implement. Reduce
both CPU and GPU workload.

Non-conservative. May
introduce “popping” artifacts.

Drop culling Reduce both CPU and GPU
workload. Allow for real-time
navigation regardless of scene
complexity.

Non-conservative. Often
severe “popping” artifacts.
To measure the actual performance, Dxtory was used [42]. Dxtory is
software that “hooks into” the graphics driver in order tomeasure frame
rate. The frame rate (in frames per second) is then displayed as a
numerical value in the viewport of the currently active viewer. As we
have implemented different performance metrics in our prototype
BIM viewer we were also able to verify the accuracy of Dxtory which
shows no overhead in practice. To further analyze the behavior of the
different viewers we have also used gDEBugger [43] and RenderDoc
[44], which allows calls to the graphics API to be traced, and GPU-Z
[45], which reports the GPU utilization level. All the performance tests
were performed on two different computers, one high-endworkstation
(WORKSTATION) and one laptop (LAPTOP). The workstation was
equipped with an Intel i7 3.06 GHz CPU, 6 GB of RAM and an Nvidia
GeForce GTX 570 GPU running Windows 7 x64. The laptop was
equipped with an Intel i7 1.9 GHz CPU, 4 GB of RAM and an Nvidia
GeForce GT 620 M GPU running Windows 8.1 x64. According to the
specifications these two systems offer vastly different capacity in
terms of both CPU- and GPU performance. However, as evident from a
number of Super PI tests [46] we found the single-thread CPU perfor-
mance to be fairly equal on both systems. For all of the tests the
viewport size was set to 1280 × 720 pixels, with anti-aliasing
deactivated, and a camera field-of-view of 75°. While performing the
actual tests, no other application except the currently tested BIMviewer
has been running. In order to further minimize any potential perfor-
mance interference, real-time anti-virus protection has been disabled
and the Power Option mode in Windows has been set to “High perfor-
mance”. On both systems the Nvidia graphics driver version 344.75
has been installed. In the graphics driver setting, the Power manage-
ment mode has been set to “Prefer maximum performance”.

In order to make a fair comparison of the different viewers in terms
of performance, any acceleration technique that results in an incorrect
visualization is turned off. Specifically, Navisworks and Solibri as well
as DDS CAD Viewer implement drop culling in order to guarantee inter-
active frame rates during navigation. As previously stated this is a non-
conservative acceleration technique that simply stops drawing objects
once a certain rendering time has been reached. Although the rejection
of objects appears to be based on its relative “importance” for the
current view (size, type and distance to viewpoint) the approach does
not guarantee a correct visualization and often results in severe visual
“popping” during navigation. Fig. 3 shows an example of this in
Navisworks for the student housing model when the desired frame
rate has been set to 20 Hz. As can be seenmany objects that are visually
important are omitted. During navigation the negative effects of this
technique is even more pronounced as the selection of objects to
“drop-out” constantly changes. In Solibri the behavior is similar, how-
ever, instead of specifying a target frame rate the users specify a
maximum number of objects that are allowed to be rendered during
navigation. The effects of enabling drop culling in Solibri are shown in
Fig. 4 for the Hotel model. Here we have specified the maximum
number of rendered objects to 9000, which corresponds to a frame
rate of 20 Hz on the WORKSTATION system. In addition to show the
visual artifacts encountered during navigation, Fig. 4 also highlights
the problems of using object size as a heuristic for visual importance.
Although small objects generally contribute less to the final image,
this observation is highly dependent on context. The façade of the
Hotel building is covered with a number of dark stone plates. As the
individual components are small in relation to other objects in the
model they are given a low priority by the drop culling algorithm.
However, together they form a vital part of the visual impression and,
hence, omitting them greatly affects the esthetics of the building.

In the latest version of DDS CAD Viewer (10.0), the effect of drop
culling is similar, as seen in Fig. 5 where the desired frame rate has
been set to 10 Hz. However, contrary to both Navisworks and Solibri it
is not possible to turn it off. Because of this, we instead perform all of
our tests on the previous version of the viewer (8.0), where it is possible
to turn it off.

Fig. 2. The different test-models: Library (top-left), Student house (top-right), Hospital (bottom-left) and Hotel (bottom-right), visualized in our prototype BIM viewer.

73M. Johansson et al. / Automation in Construction 54 (2015) 69–82
For all of the tests we have focused on the worst case scenario in
terms of rendering performance. For the viewers that only take advan-
tage of view frustum culling (Solibri, BIMsight and DDS), this simply
means any viewpoint where the complete model is visible. With
Navisworks, on the other hand, the worst case scenario is more depen-
dent on the particular viewpoint, as it implements occlusion culling.We
therefore represent our worst case scenarios as the lowest frame rate
that we have encountered during several interactive navigation se-
quences within each one of the four models. Still, even for Navisworks,
theworst case scenario becomes an exterior viewpoint when any of the
tested models are fully contained within the view frustum.

In additionwe have selected two interior viewpoints in all of our test
models. The first one of these, VP1, is taken from the entrance in the
public buildings (Hotel, Library and Hospital) with the view direction
pointing horizontally “into” the building. For the student model, VP1 is
taken from a room on the “outer perimeter” of the building on the
fourth floor, with the view direction pointing “into” the center of the
building. For VP2 we have selected highly (Hotel, Hospital and Student
house) and moderately (Library) occluded viewpoints, primarily to be
able to determine how well any of the viewers could take advantage
of the fact that only a subset of the scene is actually visible. Regardless
of culling strategy, the interior viewpoints represent neither the worst
nor the best case in terms of performance. However, with the exception
of BIMsight, they do allow for a fair comparison between the tested
viewers. Due to a surprisingly low, hard-coded camera field-of-view
(around 30°), the view frustum is much narrower in BIMsight, than
compared to the other viewers. This has the effect that it does not
contain an equally large amount of objects. As such, the performance
results for the interior viewpoints in BIMsight become much better
than they would have been with the field-of-view that was chosen for
Table 2
Number of triangles, objects and geometry batches for each of the four test-models.

Model # of triangles # of objects # of geometry batches

Library 3,685,748 7318 11,195
Student house 11,737,251 17,674 33,455
Hospital 2,344,968 18,627 22,265
Hotel 7,200,901 41,893 62,624
the tests (75°). In Fig. 6, one of the selected view points (VP1) is
shown for each of the models.

4. Performance analysis and comparison of existing BIM viewers

The results from our performance tests are presented in Fig. 7 for
each of the four test models (From top to bottom: Library, Student
house, Hospital and Hotel). For each model, the performance in the
worst case scenario as well as for viewpoint one (VP1) and viewpoint
two (VP2) is presented for all existing viewers on both systems. The
frame rates presented are consistent (i.e. non-fluctuating) for the differ-
ent viewpoints and have been re-verified during several different test
rounds. As both Navisworks and Solibri offer different acceleration
features, we present the performance results from these two viewers
in two versions. For Solibri this includes the default setting (Solibri) as
well as with “Optimize Rendering Speed” enabled (Solibri OPT). For
Navisworks the results for both CPU Occlusion Culling (Navis CPU) as
well asGPUOcclusion Culling (Navis GPU) are presented. For all viewers
we have performed the tests with the graphics driver settings
“Threaded optimization” enabled, as well as disabled. The results pre-
sented in Fig. 7 are for the setting that provided the best performance
for each viewer. For Solibri and Navisworks that turned out to be
“enabled”. For BIMSight and DDS, on the other hand, that turned out
to be “disabled”.

When reviewing the results in Fig. 7 it becomes clear that on the
WORKSTATION system, Solibri with “Optimize Rendering Speed”
enabled (Solibri OPT) offers the best overall performance. This holds
for all four test models and the difference compared to the other
viewers is quite significant. For the worst case scenarios, were each
model is completely visible, Solibri is able to deliver speed-ups of
1.3×–44× compared to that of the other viewers. However, the benefit
of the optimization feature is clearly not consistent across different
systems. In fact, enabling it on the LAPTOP system actually results in a
major performance decrease for the Library and Student House models.

Focusing on the results from Solibri without optimization enabled,
we instead find that it share similar overall performance as Navisworks
with CPU occlusion culling (Navis CPU). The only clear exception is for
the Library model, were Solibri provides much better performance on
both systems.

Fig. 3. Visual artifacts (right) when forcing 20 Hz in Navisworks on the WORKSTATION system.

74 M. Johansson et al. / Automation in Construction 54 (2015) 69–82
However, perhaps more interesting is that the worst case perfor-
mance offered by the other two viewers (DDS and BIMsight) is way
below our minimum requirement of 15 Hz for all test models. Even
for the interior viewpoints these viewers share the problem of reaching
our lowest level of interactivity. When considering the worst case
scenarios, equally low performance numbers also apply to Navisworks
with GPU occlusion culling (Navis GPU). For all models on both systems
the worst case performance is far from reaching 15 Hz. On the other
hand, for highly occluded viewpoints (e.g. VP1 and VP2 in the Hotel
and Student House models, as well as VP2 in the Hospital model),
Navisworks with GPU occlusion culling is actually very close to deliver
the best performance of all viewers.

Given the huge spread in rendering performance among the tested
viewers it becomes clear that the individual rendering implementations
must differ. Although the use or non-use of occlusion culling stands out
as one obvious difference, it doesn't fully explain the huge variation. In
order investigate this aspect further we analyzed the different viewers
using gDEBugger and RenderDoc. To our surprise we found that neither
BIMsight nor DDS CAD Viewer takes advantage of vertex buffer objects
(VBOs) to efficiently render geometry. Even if VBOs have been a stan-
dardized feature of OpenGL since 2003, BIMSight still use vertex arrays
to drawgeometry. Because of additional data transfer for each draw call,
the performance penalty of this approach is naturally higher as evident
by the lowperformance in our tests. The case of theDDS CADViewer, on
the other hand, ismore complex as it uses display lists [47]. A display list
is a group of rendering commands that has been compiled and stored in
GPU-memory for later execution. As with VBOs, this approach consider-
ably reduces data transfer for each draw call and should lead to a similar
performance. However, according to our test results this appears not to
be the case. For reasons that are unknown the performance of the
DDS CAD Viewer is instead similar to, or actually lower, than that of
BIMSight.

In contrast, both Solibri and Navisworks were found to use VBOs. In
the case of Solibri, one VBO is used per object. Furthermore, with
Fig. 4. Visual artifacts (right) when forcing 20 H
optimization enabled, Solibri takes advantage of hardware-accelerated
geometry instancing. As explained in Section 2.3.1, this is a feature of
modern GPUs that allows several instances of a replicated geometry to
be rendered with a single draw call, thereby reducing CPU overhead.
However, as evident from our performance results, this optimization
technique appears to only provide a consistent performance increase
on a high-end system, such as the WORKSTATION.

The use of VBOs in Navisworks, on the other hand, differs substan-
tially. Navisworks pre-allocates a number of VBOs of similar sizes
(between 1200 and 1500 triangles each) and then fills these with
triangles from the model based on spatial locality. That is, a VBO in
Navisworks does not necessarily correspond to the triangles of a
particular object, but instead to a “chunk” of nearby located triangles.
Nevertheless, contrary to what one would expect we also found that
Navisworks re-uploads all, or at least major parts, of the VBO content
every frame, even if there is no change in visibility. As re-uploading
large amounts of data to GPU memory every frame is prone to affect
performance negatively, it is thus very likely that the performance of
Navisworks could be substantially increased by skipping this step.
Other than to support streaming of geometry data (to support models
of sizes that exceed available GPU memory) we cannot explain the
choice of such a strategy.

To give a better overview of our initial findings we present viewer-
specific information regarding any acceleration techniques that are
used in Table 3. The following abbreviations are used (and combined)
in the table: VFC for View frustum culling, DC for Drop culling, OC for
Occlusion culling, and HAGI for Hardware-accelerated geometry
instancing.

Still, even if Solibri and Navisworks with CPU occlusion culling were
found to offer the better performance among the existing viewers, none
of themwere able to provide sufficiently high frame rates for all models
on both systems. In fact, relating to our satisfactory requirement
of 30 Hz, Solibri is only able to guarantee enough interactivity for one
of the tested models (Library). For the other three models, only two of
z in Solibri on the WORKSTATION system.

Fig. 5. Visual artifacts (right) when forcing 10 Hz in DDS CAD Viewer 10.0 on the WORKSTATION system.

75M. Johansson et al. / Automation in Construction 54 (2015) 69–82
them (Hospital and Student house) barely pass the minimum require-
ment of 15 Hz. Even with optimization enabled on the WORKSTATION
system, these two models could only reach 30 Hz for the interior view-
points. Although these models can be considered large and detailed,
they are far from being a worst case scenario, even today. Taking future
directions for the use of BIMs into account it should be safe to assume
that even larger models will be used tomorrow. As such, a more perfor-
mance efficient solution for real-time visualization of BIMs is required.
To further understand the reason behind the performance results and
to find the actual bottlenecks we provide a more detailed analysis of
both Solibri and Navisworks in the following subsections.

4.1. Detailed analysis of the Solibri Model Viewer

When taking a closer look at the results from the SolibriModel View-
er (without optimization enabled) in relation to model statistics, it
becomes clear that the performance on the WORKSTATION system is
more affected by object count than by triangle count. In Fig. 8 we
illustrate this observation by comparing the rendering performance
with the inverse object count (1/object count) and inverse triangle
count (1/triangle count). Here, the different models are arranged
based on increasing performance and, as can be seen, the rendering per-
formance is almost inversely proportional to object count for the four
different test models. When considering triangle count no such relation
can be seen. In fact, if performance were dictated by triangle count, we
Fig. 6. Interior viewpoints (VP1) for the Library (top-left), Student house (top-right), Hosp
would have gotten completely different results. The strong relation
between object count and frame rate thus points in the direction that,
for all four test models on the high end system, the Solibri Viewer is
CPU-bound due to the large number of draw calls. To further confirm
this GPU-Z was used to measure the actual GPU load, which showed
no more than 30% GPU utilization for any of the models on the WORK-
STATION. Due to the large number of individual objects in relation to the
total number of triangles (i.e. low triangles-per-object ratio), the time
spent on processing draw calls on the CPU is thus greater than the
time the GPU needs to draw the actual geometry. Because of this the
GPU is mostly idle and the rendering performance becomes entirely
dictated by the number of draw calls that has to be processed by the
application.

On the LAPTOP system the performance results for the Hotel and
Hospital model are equal to that of the high end system. Even with a
less powerful GPU these models are still CPU-bound, as evident from
an analysis with GPU-Z. Furthermore, with rendering performance
being equal to that of the high end system, the results confirm that
both systems have similar (single-thread) CPU capacity. However, for
the Library and Student House model the Solibri viewer is instead
GPU-bound, as evident by lower rendering performance compared to
that of the high end system and a GPU utilization at 100% according to
GPU-Z. For these two models the triangles-per-object ratio (504 and
664, respectively) are high enough to make the less powerful GPU the
bottleneck.
ital (bottom-left) and Hotel (bottom-right), visualized in our prototype BIM viewer.

Fig. 7. Rendering performance (in Hz) for the four existing BIM viewers for the (from top to bottom) Library, Student house, Hospital and Hotel model, respectively.

76 M. Johansson et al. / Automation in Construction 54 (2015) 69–82
These tests have highlighted the importance of keeping a low draw
call count (i.e. number of objects) in order to achieve high rendering
performance. At approximately 20,000 draw calls per frame, the
corresponding CPU-load alone will limit the performance to around 15
Table 3
Vertex data type and acceleration technique used in the tested viewers (VFC=View frus-
tum culling, DC = Drop culling, OC = Occlusion culling, HAGI = Hardware-accelerated
geometry instancing).

BIM viewer Vertex data Acceleration technique

Solibri 9.0 VBOs VFC | DC (optional) | HAGI (optional)
Navisworks 2015 VBOs VFC | DC (optional) | CPU OC (optional) |

GPU OC (optional)
BIMsight 1.9.1 Vertex arrays VFC
DDS 8.0 Display lists VFC | DC (optional)
DDS 10.0 Display lists VFC | DC
FPS. Even with an infinitely fast GPU the performance would not
change. At the other end of the spectrum, even 7000 draw calls are
too much in order to reach an optimal frame rate of 60 Hz. These
numbers, of course, assume a system with similar CPU performance as
the ones tested. Depending on GPU and triangles-per-draw-call ratio,
the performance may then be further reduced. For the GPU on
the LAPTOP system the breakpoint when this occurs was found to be
somewhere between 172 and 504 triangles per draw call. For the
WORKSTATION system, on the other hand, 664 triangles per draw call
appeared to be far from the GPUs ultimate capacity. In practice this
means that the number of triangles per object could be substantially
increased without affecting rendering performance.

With this analysis at hand, it becomes clearwhy Solibri also offers an
optimization feature that takes advantage of hardware-accelerated
geometry instancing. As typical building models often contain much
replicated geometry, such as identical windows, doors and furniture, it

Fig. 8.Worst-case rendering performance (left), inverse object count (middle) and inverse triangle count (right) for the four different test models visualized in Solibri on theWORKSTA-
TION system.

77M. Johansson et al. / Automation in Construction 54 (2015) 69–82
almost seems as a perfect fit in order to reduce the number of draw calls
and corresponding CPU-load. Our performance results on the
WORKSTATION system verify this for all fourmodels.With optimization
enabled, the speed-up is between 1.5× and 1.6× in the worst case
scenarios. However, the use of instancing also puts higher burden on
the GPU, as evident by a decrease in performance for two of themodels
(Library and Student house) on the LAPTOP system. As these two
models are GPU-bound (as opposed to CPU-bound), the use of instanc-
ingdoes not provide any benefit, but insteadonly increase thework that
has to be done on the GPU, with a performance reduction as result. We
can thus conclude that the use of instancing can give a significant
performance gain, but only if the application is CPU-bound.

4.2. Detailed analysis of Navisworks

With Solibri mainly implementing pipeline optimizations to provide
efficient rendering, the different strategies used could be extracted
through a graphics API debugger togetherwithmodel statistics. Howev-
er, with Navisworks taking advantage of occlusion culling, a detailed
analysis becomesmuchmore difficult. Even in the case when the actual
occlusion tests are performed on the GPU (Navis GPU), the logic that
decides which tests to perform, as well as how the rendering engine
should react to them, is implemented on the CPU. As we are only able
to trace calls to the graphics API, a potentially huge part of the respective
algorithms therefore becomes “hidden”. For instance, in the case of the
CPU occlusion culling system, no information can be extracted regard-
ing how many occlusion tests that are performed or even if the culling
is performed during the same frame as the rendering.

Even so, there is some interesting information thatwe are able to ex-
tract when analyzing Navisworks in RenderDoc. In Table 4, the frame
rate, number of draw calls performed, as well as triangles rendered is
presented for the different occlusion techniques in the worst case and
VP1 viewpoints for the Student House model on the WORKSTATION
system. In addition, we have added the data when no occlusion culling
is enabled (i.e. only frustum culling). For both number of triangles and
number of draw calls, we have further separated the data in those that
represent “real” geometry (Regular) and those that represent bounding
boxes used for the occlusion tests (B-box). As reported by RenderDoc,
every bounding box draw call also has a corresponding occlusion
Table 4
Rendering statistics for the Student model rendered in Navisworks for two different viewpoint

Viewpoint Technique # of draw calls

Regular B-box Total

Worst case Frustum 4600 – 4600
CPU OC 517 – 517
GPU OC 463 13,337 13,800

VP1 Frustum 2477 – 2477
CPU OC 263 – 263
GPU OC 30 2160 2190
query (i.e. a single occlusion query is issued for every bounding box
draw call).

As can be seen in Table 4, the number of triangles rendered in the
worst case scenario is almost equal, regardless of occlusion culling
method. The frame rate and total number of draw calls, on the other
hand, shows huge differences. Although the number of regular draw
calls (i.e. that represent the “real” geometry) are fairly equal, the
number of bounding box draw calls performed for the GPU occlusion
culling technique show a surprisingly high number (13,800). Given
that all of the 11,200,000 triangles contained in the Student model can
be rendered at an almost equal frame rate without any occlusion culling
at all (Frustum), the huge number of occlusion tests (i.e. draw
call + occlusion query) thus appears to be the main reason for the
low performance. In comparison, the CPU occlusion culling technique
stands out as offer equally good culling efficiency, but with far less
overhead.

However, for the highly occluded viewpoint (VP1) the GPU occlu-
sion culling technique shows more promising results. Compared to
CPU occlusion culling, the culling efficiency is much better (i.e. it does
not overestimate the amount of visible geometry), and although the
number of occlusion tests are still fairly high the overhead becomes
manageable, as evident by higher frame rate.

To summarize our analysis of Navisworks, we have been able
to determine that the available occlusion culling systems greatly
reduce the amount of geometry that needs to be rendered in any
given viewpoint. However, because of an inefficient implementation,
the GPU-based approach suffers from significant overhead and
mainly becomes useful only in interior or highly occluded areas. In
comparison, the CPU-based approach stands out as having, not only
lower, but also fairly constant overhead. As such, it becomesmore useful
in practice.

Through our detailed analysis of Solibri Model Viewer and
Navisworks we have gained a better understanding of their inner
workings and been able to identify the main bottlenecks in terms of
rendering performance. In the case of Solibri we have also been able
to construct a number of metrics as to how it will behave for different
BIMs on systems similar to the ones tested. Together, these results
form a baseline when considering different approaches to improve
rendering performance. In the following section we further address
s using three different acceleration techniques on the WORKSTATION system.

of triangles Frame rate

Regular B-box Total

11,200,000 – 11,200,000 3
1,240,800 – 1,240,800 11
1,111,200 160,044 1,271,244 4
5,944,800 – 5,944,800 6
631,200 – 631,200 19
72,000 25,920 97,920 36

78 M. Johansson et al. / Automation in Construction 54 (2015) 69–82
the current situation by analyzing potential acceleration techniques for
our prototype BIM viewer.

5. Development and validation of our prototype BIM viewer

As discussed in Section 2, there are a number of techniques that can
be utilized in order to accelerate real-time rendering. These have all
strengths and weaknesses and a suitable choice is highly dependent
on the type of 3D environment that it should be applied to. For our
prototype BIM viewer we opted for occlusion culling as the primary
acceleration technique. Given that BIMs typically exhibit a lot of
occlusion, this appeared as themost logical choice. Althoughwe initially
also considered LOD and geometry batching, these techniques were
ruled out for practical reasons. Geometry batching would complicate
any form of applications that require visibility to be controlled per-
object, such as 4D simulations, and the use of LOD would require the
existence of simplified 3D-models for all objects. Furthermore, LOD
would only be helpful if the application was GPU-bound. In a similar
way, hardware-accelerated geometry instancing would potentially
reduce CPU-overhead, but also make culling less efficient. In compari-
son, occlusion culling becomes a much more versatile approach. As
objects can be rejected before sent to the GPU, both number of triangles
and draw calls are reduced. Assuming that the process of identifying
hidden objects does not introduce additional overhead, occlusion
culling therefore becomes beneficial in either CPU-bound or GPU-
bound scenarios.Within this category of acceleration techniques several
different algorithms exist that are mainly differentiated by whether
they require time-consuming offline computations or not [37,48].
For the purpose of review sessions that require the visualization to be
initiated on-demand, an offline solution is clearly not the most suitable
approach. For our prototype BIM viewer we have therefore chosen to
implement what is generally considered current state-of-the-art in
terms of online visibility detection – the latest version of the Coherent
Hierarchical Culling algorithm [49].

5.1. Coherent hierarchical culling

Occlusion queries is a feature of modern GPUs that lets any
application query the number of pixels that will end up on screen
when rendering a specific set of geometries. This way, proxy-
geometries can be used to test if any occlusion is present before the
actual object is rendered. However, the use of occlusion queries
introduces latency in the rendering pipeline which may lead to a
decrease in performance if used naively. The initial Coherent Hierarchi-
cal Culling algorithm (CHC) [50] makes use of temporal and spatial
coherence in order to reduce this latency. The state of visibility from
the previous frame is used to initiate queries in the current frame
(temporal coherence) and by organizing the scene in a hierarchical
structure (i.e. bounding volume hierarchy) it is possible to test entire
branches of the scene with a single query (spatial coherence). While
traversing a scene in a front-to-back order, queries are only issued for
previously invisible interior nodes (i.e. groups of objects) and for previ-
ously visible leaf nodes (i.e. singular objects) of the hierarchy. The state
of visibility for previously visible leaves is only updated for the next
frame and they are therefore rendered immediately (without waiting
for the query results to return). The state of visibility for previously
invisible interior nodes is important for the current frame and they are
not further traversed until the query results return. By interleaving the
rendering of (previously) visible objects with the issuing of queries,
the algorithm reduces idle time due to waiting for queries to return.

Still, for sceneswith a low level of occlusion, the initial version of the
algorithm can actually decrease performance (compared to only using
frustum culling). To address this, CHC++, a revised version of the
algorithm was developed [49]. Although the core ideas remain the
same, CHC++ introduces several optimizationswhichmake it perform
very well even in situations with low occlusion. Most notably, the
improved version addressed the problem of redundant state changes
due to the interleaved rendering and querying. Instead of directly
querying a node, it is appended to a queue. When this queue reaches
a certain size, the rendering state is changed to querying and an
occlusion query is issued for each node in the queue.

For our prototype BIM viewer the revised version of the algorithm
has been implemented, as outline in the following section.

5.2. Implementation

Our prototype BIMviewer iswritten in C++and uses OpenGL 4.3 as
graphics API. It is compiled as a 64-bit, single-threaded application. To
be able to load BIMs through the IFC file format we initially used IFC
Engine DLL [51], which is a C++ toolbox with functionality to access
3D-geometry and object properties expressed in IFC files. However,
IFC Engine DLL only provides a single “chunk” of geometry per object.
That is, even if a window created in a BIM authoring software typically
consists of two different chunks of geometry – one for the frame, and
one for the glass – it is only possible to get a single, combined chunk
of geometry for thewindow from IFC EngineDLL. Because of this restric-
tionwe instead implemented our own file exporter in Revit through the
Custom Export API. That allows us to get the 3D geometry correctly
separated by material for all types of objects. Although we extract the
geometry directly from Revit's internal database, we have verified that
the scene complexity (i.e. number of objects and triangles) is close to
identical as when using the IFC Engine DLL for all test models.

Upon scene loading, we construct a bounding volume hierarchy
(BVH) according to the Surface Area Heuristics (SAH) [52]. In this
hierarchy the leaf nodes represent the individual building components,
such as doors, windows and furniture. Although all rendering traversal
work primarily utilizes the BVH, we also maintain a “traditional” scene
graph based on the transformation logic among the objects in the 3D
scene. For each object we construct one VBO per material. That is, a
typical window object will be represented by two VBOs, one for the
frame geometry and one for the glass geometry. We take advantage of
instancing at the memory level – replicated objects of a certain type
use the same VBO, but are transformed by a unique transformation
matrix. That is, each instance still requires a unique draw call. Transpar-
ent geometry is collected during scene traversal and sorted back-to-
front before rendered in a final pass with alpha blending enabled.

The implementation of CHC++ is based on the description and
accompanying code presented in [53], which is written by the same
authors who wrote the original paper. As such, it serves as a valid
reference implementation. We use all the proposed “features” of the
original algorithm except for the multiqueries optimization. The
purpose of multiqueries is to group invisible (but spatially non-
coherent) nodes that are likely to remain invisible, and then use a single
occlusion query for each such group in order to reduce the total number
of queries. However, as we did not observe any obvious performance
benefit from this feature we have disabled it during the tests presented
in this article.

A major requirement in order to provide an efficient implementa-
tion of CHC++ is the ability to render axis-aligned bounding
boxes with low overhead. Being primarily based on OpenGL 2.1 (with
extensions), the code presented in [53] uses OpenGL “Immediate
Mode” (i.e. glBegin/glEnd) for rendering bounding boxes, and vertex
arrays for rendering “tight” bounding boxes (i.e. bounding volumes
that are represented as an aggregation of its children's bounding
boxes at a particular depth in the hierarchy). As these represent depre-
cated features in OpenGL 4.3, another solution was thus needed for our
prototype viewer. Initially we tried to store every bounding box of the
hierarchy as a single VBO in GPU memory. However, due to a large
number of buffer binds during rendering (i.e. one for each bounding
box to test), this affected performance negatively. Instead we take
advantage of the fact that any axis-aligned bounding box can be
represented as a unit-cube (i.e. a cube with length 1 centered in origo)

79M. Johansson et al. / Automation in Construction 54 (2015) 69–82
with a corresponding translation and scale. Every bounding box in our
spatial hierarchy therefore also maintains a 4 × 4 transformation
matrix,which represents the combine translation and scale that is need-
ed in order to form it from a unit-cube. During every querying phase (as
explained in Section 5.1) a single VBO, representing the geometry of a
unit-cube, is used to render every individual bounding box. Before
performing each individual draw call, the unique “unit-cube transfor-
mation matrix” is submitted to the vertex shader as a uniform variable.
In comparison to both the “Immediate Mode” approach as well as stor-
ing a single VBOper node of the BVH, the unit-cube approach provided a
much more performance efficient solution.

To also enable efficient rendering of tight bounding boxeswe further
extended the unit-cube concept. In essence, to support tight bounding
boxes, multiple unique bounding boxes needs to be rendered. We do
this by submitting an array of unit-cube transformation matrices as a
vertex shader uniform, followed by an instanced draw call. When
performing instanced rendering in OpenGL an internal counter is
available in the vertex shader, which advances for each iteration.
Based on the value of the internal counter we fetch the correct matrix
from the array and transform the unit-cube. That is, by taking advantage
of hardware-accelerated instancing, we can render any tight bounding
box with a single draw call.

5.3. Performance evaluation of our prototype BIM viewer

For the performance evaluation of our prototype BIM viewer we
have used the same test models and interior view points as described
Fig. 9. Comparison of rendering performance between our prototype viewer and Solibri for thew
systems.
in Section 3. As we utilize an efficient occlusion culling algorithm the
performance is highly dependent on the view point we chose. We
therefore represent our worst case scenarios as the lowest frame rate
that we have encountered during several interactive navigation
sequences within each one of the four models. In Fig. 9 we present the
frame rates recorded for the worst case scenario, viewpoint one (VP1)
and viewpoint two (VP2) for all models on both systems. To better
illustrate the performance gain offered by our prototype we have also
added the results from the Solibri viewer (the results from the
optimized version for the WORKSTATION and from the default version
on the LAPTOP). As can be seen the speed-up in theworst case scenarios
is quite significant, ranging between 2.2×–5.7× and 1.7×–5× for the
WORKSTATION and LAPTOP, respectively. That is, even for the Library
model, which doesn't exhibit as much occlusion, our prototype viewer
is close to offer a doubling of the rendering performance compared to
Solibri. In this context it is also important to note that Solibri does not
support multiple materials per object. If a similar strategy had been
used for our prototype viewer, the natural reduction of draw calls
could have made the difference in performance even bigger.

More important, however, is the actual performance numbers.
When considering the worst case scenarios our viewer clearly
passes or is just below our optimal level of interactivity of 60 Hz
for three of the models on both systems. Although our prototype
is not able to provide equally high figures for the Hotel model, it
can still guarantee a worst case performance of at least 30 Hz on ei-
ther system (41 Hz on the WORKSTATION), which equals our satis-
factory requirement.
orst-case scenario (top), VP1 (middle) and VP2 (bottom) for the four testmodels on both

80 M. Johansson et al. / Automation in Construction 54 (2015) 69–82
For the interior viewpoints (VP1 and VP2 in Fig. 9) the performance
offered by our prototype viewer is even more impressive. Here, the
occlusion culling system can take advantage of the fact that only small
subsets of the complete models are actually visible. For any of the
interior viewpoints in either model the frame rates are consistently
above 450 and 150Hz for theWORKSTATION and LAPTOP, respectively.
Consequently, our prototype viewer is able to guarantee very smooth
and responsive navigation inside all of the fourmodels on both systems.
In comparison to Solibri these numbers corresponds to speed-ups
between 5.3×–48× and 3.5×–26× for the WORKSTATION and
LAPTOP, respectively.

In Fig. 10, we provide additional information about the rendering
performance obtained with our prototype viewer. Here, the frame
rates are presented for a pre-defined camera path for each one of the
four test models. During these sequences the camera is following a
path around each building while the view direction is oriented towards
the center of the building. As each model is completely visible through-
out the whole navigation sequence, albeit from different directions, it
serves as a representative worst case scenario. In addition to give a
clear picture of the performance characteristics provided by our proto-
type viewer, these graphs tell us that a models triangles-per-object
ratio affect performance even when occlusion culling is utilized, as
evident by much greater performance difference between the LAPTOP
and WORKSTATION for the Library and Student house models. Howev-
er, in comparison to our analysis of Solibri, a further discussion regard-
ing CPU- or GPU-boundedness on the different systems becomes a bit
more complex. This is because with GPU-based occlusion queries,
rendering is no longer only a unidirectional process (i.e. the CPU is feed-
ing the GPU with draw commands), but instead also incorporates
elements of bidirectional communication (i.e. the CPU is issuing an
occlusion query and then later requests the result of it back from the
GPU). That is, not only might the GPU be waiting for the CPU, but also
the other way around. In essence, this means that it is difficult to get
100% GPU utilization. To make things even more complex, final
Fig. 10. Rendering performance (Hz) of our prototype viewer for the pre
performance and level of GPU utilization doesn't necessarily go hand
in hand. As only a subset of a scenes triangles might has to be rendered
(due to the culling), performance can still be high even if the GPU isn't
fully utilized. That is, it might be “worth” to be CPU- or wait-bound,
performance-wise.

Nevertheless, based on the graphs in Fig. 10, we can conclude that
the Library and Student models are primarily GPU-bound on the Laptop
system. This is evident by the huge differences compared to the results
on the workstation system, as well as 90% GPU load reported by GPU-Z.
On theHospital and Hotelmodels we also see that a faster GPUwill pro-
vide better performance. However, especially in the case of the Hotel
model, the difference compared to the workstation system is not by as
much as for the other twomodels. For theHotelmodelwe can therefore
conclude that it is primarily GPU-bound, but very close to the point of
instead being CPU-bound because of a large number of draw calls
(due to many objects being, in fact, visible).

The models on the workstation system, on the other hand, appears
to be primarily CPU-bound, as evident by a GPU utilization level of
around 60% for the Library and Student house, and only 30% for the
Hospital and Hotel models, as reported by GPU-Z. However, as men-
tioned previously, it makes more sense to look at the GPU utilization
level in relation to frame rate instead of focusing on whether the appli-
cation is CPU-bound or not. More specifically, for viewpoints where
we have a low GPU utilization level at the same time as performance
is low, there is potential to increase performance by utilizing the GPU
better.

Together, the results from the performance tests of our prototype
BIM viewer confirm our assumption that occlusion culling is a suitable
acceleration technique for real-time visualization of typical building
models. To some degree, the benefit of using this type of acceleration
technique for highly occluded interior viewpoints was already demon-
strated by our performance tests with Navisworks. However, by taking
advantage of a highly efficient algorithm, such as the CHC++, we
have shown that the utilization of occlusion culling does not need to
-defined animation sequence around each model on both systems.

81M. Johansson et al. / Automation in Construction 54 (2015) 69–82
suffer from additional overhead and therefore becomes suitable also for
exterior viewpoints.

6. Discussion and conclusions

In this paperwe have highlighted and addressed the complexity and
challenges involved in visualizing large BIMs. The contribution of the
paper is twofold: (a) an analysis of commonly used BIM viewers in
terms of real-time rendering performance and (b) the development
and validation of a prototype BIM viewer that is able to handle large
and detailed building models. Below these two contributions are
discussed in more detail

Regarding the analysis of existing BIM viewers, an obvious observa-
tion from our tests was the huge difference in rendering performance.
Even when omitting the extremely poor results from the DDS CAD
Viewer, the difference between the fastest and the slowest viewer
range between 1.6× and 22× for any of the viewpoints on either
system. These findings thus highlight the need to add software capacity
as a distinct variable to the problem space currently surrounding the
topic of BIM visualization. While previous studies mainly have attribut-
ed visualization-related problems to either model complexity or lack of
sufficient hardware our tests clearly show that a viewer's ability to effec-
tively utilize available hardware can become a far more important fac-
tor. For the same models, different viewers will produce user
experiences that range from totally unacceptable to satisfactory as far
as rendering performance goes. A selection of BIM-viewerwill therefore
directly affect how well design review sessions or client presentations
can be performed. In addition, our in-depth analysis shows that the
very concept ofmodel complexity and hardware also needs to be revised.
Although itmight be reasonable to assume that theperformance offered
by any of the viewers would mainly be affected by a models triangle
count and the computational power of the GPU, our tests instead
show that object count and CPU performance is equally important to
consider. In fact, in themajority of test, the CPU, and not theGPU, turned
out to be the bottleneck. Because of a strong interdependence between
a models triangles-per-object ratio, CPU- and GPU performance,
seemingly different systems may thus behave surprisingly similar
depending on model characteristics. Although we initially expected
our WORKSTATION system to offer much more performance than the
LAPTOP, our results from the Solibri viewer were near-identical on
both systems for two of the models. Due to a low triangles-per-object
ratio these models became CPU-bound on both systems and with
current graphics APIs being primarily single-threaded, the added num-
ber of CPU cores on theWORKSTATION system did not make any differ-
ence. Although the optimization feature (instancing) in Solibri was able
to reduce the CPU-dependency to a certain degree, the performance
results were still very close on both systems for two of the models.
Similar behavior also became apparent from our tests with Navisworks,
as theworst case performance results were very close to being identical
for all models on both systemswith CPU occlusion culling. Consequent-
ly, regardless of viewer, it becomes difficult to discuss either model
complexity or hardware without knowing the details of their respective
counterparts.

The test from Navisworks further revealed that different occlusion
culling strategies can have vastly different effects. As such, it becomes
equally difficult to discuss and compare different acceleration tech-
niques based on what category they belong to. In every situation,
regardless of strategy, the details must be known.

However, despite huge differences in rendering performance, none
of our tested viewers were able to provide a sufficiently high frame
rate for all models. In fact, even Solibri, who turned out to offer the
best performance, could only guarantee a satisfactory level of 30 Hz
for one of the tested models. For the other three models the frame
rates in the worst-case scenarios were either below or just above our
minimum requirement of 15 Hz. Even with optimization enabled,
these models could not be guaranteed to reach 30 Hz. In this context
it is of course important to acknowledge that both Navisworks and
Solibri implement functionality to guarantee a certain frame rate during
navigation. Nevertheless, as realized through the rejection of objects
that should be visible, this approach severely impacts both accuracy
and visual fidelity (e.g. see Figs. 3 and 4). Hence, our analysis clearly
shows that all of the existing BIM viewers share limitations in their
ability to provide accurate, real-time visualizations of large and complex
BIMs. As thesemodels tends to become even larger andmore detailed at
the same time as increasingly faster GPUs currently fail to solve the
problem, there should be no doubt that these limitations need to be
addressed.

Our second contribution is the development of a prototype BIM
viewer that solves these particular limitations. Our prototype BIM
viewer was able to provide sufficiently high frame rates for all models
on both systemswithout the need to use non-conservative culling strat-
egies (i.e. contribution or drop culling). By taking advantage of a state-
of-the-art occlusion culling algorithm, the rendering efforts are restrict-
ed to visible objects only, with an overall increase in performance
as a result. Compared to Solibri, the prototype viewer provides a 1.7×–
5.7× speed-up in the worst case scenarios and 3.5×–48× for the inter-
nal viewpoints. Our tests have thus demonstrated the efficiency of the
CHC++ algorithm and confirmed our hypothesis that occlusion culling
is a suitable acceleration technique for typical buildingmodels. Because
the speed-up comes from rejecting hidden objects we also expect it to
scale well when adding structural and MEP objects to the models. As
these objects typically become obscured by other objects the perfor-
mance penalty should be marginal.

Future work will look more into the use of occlusion culling in
combination with other solutions. We noticed from our HOTEL model
that occlusion culling efficiently rejects hidden objects, but still some
exterior viewpoints provided by the HOTEL model contained a large
number of visible objects that had to be rendered. In such scenarios it
becomes important to reduce the cost of draw calls in order to reach
an optimal level of 60 Hz on systems like the WORKSTATION. We
believe that this could be addressed by taking advantage of more mod-
ern features from the graphics APIs, such as hardware-accelerated
instancing. Recent updates to both Direct3D and OpenGL have exposed
much functionality in order to reduce driver overhead and draw call
cost. Exploring these features represents an obvious direction for future
research.

Ultimately, however, more scalable approaches, such as LOD, also
need to be considered as indicated by our results from the LAPTOP
system. For very large and detailed building models or in situations
when several of them are to be visualized together, the sheer amount
of geometry that needs to be rendered on screen is likely to go beyond
the capacity of any GPU, even when occlusion culling and strategies to
reduce the cost of draw calls is applied. In addition, all of the geometry
and texture data may not fit into video memory (GPU RAM) or
even central memory (CPU RAM). In order to address such scenarios,
both LOD and data streaming techniques needs to be further
investigated.

References

[1] C. Eastman, P. Teicholz, R. Sacks, K. Liston, BIM Handbook: A Guide to Building
Information Modeling for Owners, Managers, Designers, Engineers and Contractors,
John Wiley & Sons, New Jersey, 2008.

[2] J. Steel, R. Drogemuller, B. Toth, Model interoperability in building information
modelling, Softw. Syst. Model. 11 (2012) 99–109.

[3] P. Yuan, M. Green, R. Lau, A framework for performance evaluation of real-time
rendering algorithms in virtual reality, VRST '97 Proceedings of the ACM Sympo-
sium on Virtual Reality Software and Technology, ACM, New York, 1997, pp. 51–58.

[4] T. Lehtinen, Increasing Integration in Construction Projects: A Case Study on a PPP
Project Adopting BIM, eWork and eBusiness in Architecture, Engineering and
Construction: ECPPM 2012, CRC Press, 2012. 439–446.

[5] K. Svidt, P. Christiansson, Requirements on 3D Building Information Models
and Electronic Communication: Experiences from an Architectural Competition,
CIB W78 25th International Conference on Information Technology: Improving
the Management of Construction Projects Through IT Adoption, Chile, 2008,
pp. 231–238.

http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0005
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0005
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0005
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0010
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0010
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0165
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0165
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0165
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0170
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0170
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0170
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0175
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0175
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0175
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0175
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0175

82 M. Johansson et al. / Automation in Construction 54 (2015) 69–82
[6] S. Paavola, H. Kerosuo, T. Mäki, J. Korpela, R. Miettinen, BIM Technologies and
Collaboration in a Life-cycle Project, eWork and eBusiness in Architecture, Engineer-
ing and Construction: ECPPM 2012, CRC Press, 2012. 855–862.

[7] U. Plesner, M. Horst, Before stabilization: communication and non-standardization of
3D digital models in the building industry, Inf. Commun. Soc. 16 (2013) 1115–1138.

[8] J. Plume, J. Mitchell, Collaborative design using a shared IFC building
model—learning from experience, Autom. Constr. 16 (2007) 28–36.

[9] R. Davies, C. Harty, Implementing ‘site BIM’: a case study of ICT innovation on a large
hospital project, Autom. Constr. 30 (2013) 15–24.

[10] C. Dubler, J. Messner, C. Anumba, Using lean theory to identify waste associatedwith
information exchanges on a building project, Construction Research Congress 2010:
Innovation for Reshaping Construction Practice, ASCE, 2010, pp. 708–716.

[11] Z. Shen, L. Jiang, An augmented 3D iPad mobile application for communication, col-
laboration, and learning (CCL) of building MEP systems, J. Comput. Civ. Eng. ASCE
(2012) 204–212.

[12] S. Yoon, E. Gobbetti, D. Kasik, D. Manocha, Real-time massive model rendering,
Synth. Lect. Comp. Graph. Animat. 2 (2008) 1–122.

[13] T. Chuang, B. Lee, I. Wu, Applying cloud computing technology to BIM visualization
and manipulation, In 28th International Symposium on Automation and Robotics in
Construction, Korea, 2011, pp. 144–149.

[14] B.D. Larsen, Accessing large 3D BIMs from mobile devices, eWork and eBusiness in
Architecture, Engineering and Construction: ECPPM 2012, CRC Press, 2012.
505–508.

[15] W. Yan, C. Culp, R. Graf, Integrating BIM and gaming for real-time interactive
architectural visualization, Autom. Constr. 20 (2011) 446–458.

[16] S. Kumar, M. Hedrick, C. Wiacek, J. Messner, Developing an experienced-based
design review application for healthcare facilities using a 3D game engine, ITcon
16 (2011) 85–104.

[17] M. Johansson, M. Roupé, Efficient Real-time Rendering of Building Information
Models, Proceedings of the 2009 International Conference on Computer Graphics
and Virtual Reality (CGVR09), Las Vegas, 2009, pp. 97–103.

[18] M. Reddy, The Effects of Low Frame Rate on a Measure for User Performance in
Virtual Environments, Technical Report ECS-CSG-36-97, Department of Computer
Science, University of Edinburgh, 1997.

[19] K. Claypool, M. Claypool, On frame rate and player performance in first person
shooter games, Multimedia Systems 13 (2007) 3–17.

[20] W. Barfield, K. Baird, O. Bjorneseth, Presence in virtual environments as a function of
type of input device and display update rate, Displays 19 (2) (1998) 91–98.

[21] D.J. Kasik, J.J. Troy, S.R. Amorosi, M.O. Murray, S.N. Swamy, Evaluating graphics
displays for complex 3D models, Comput. Graph. Appl. 22 (3) (2002) 56–64.

[22] M.F. Shiratuddin, D. Fletcher, Development of Southern Miss's Innovation and
Commercialization Park Virtual Reality environment, Proceedings of the 6th
International Conference on Construction Applications of Virtual Reality, Orlando,
Florida, 2006.

[23] A. Herwig, P. Paar, Game engines: tools for landscape visualization and planning,
Trends in GIS and Virtualization in Environmental Planning and Design, 2002,
pp. 161–172.

[24] R. Göttig, J. Newton, S. Kaufmann, A Comparison of 3D Visualization Technologies
and their User Interfaces with Data Specific to Architecture, Recent Advances in
Design and Decision Support Systems in Architecture and Urban Planning, Springer,
Netherlands, 2005, pp. 99–111.

[25] C. Rubino, J. Power, Level design optimization guidelines for game artists using the
epic games: unreal editor and unreal engine 2, Comput. Entertain. (CIE) 6 (4)
(2008) 55.
[26] T. Akenine-Möller, E. Haines, N. Hoffman, Real-Time Rendering, 3rd edition A. K.
Peters, 2008.

[27] M. Johansson, M. Roupé, Real-Time Rendering of Large Building InformationModels,
CAADRIA 2012 - Beyond Codes & Pixels, 2012, pp. 647–656.

[28] M. Wloka, Batch, Batch, Batch: What does it really mean? Presentation at Game
Developers Conference 2003, San Jose, California, 2003.

[29] M.J. Kilgard, Modern OpenGL usage: using vertex buffer objects well, SIGGRAPH
Asia'08 courses, 2008 (13:1–13:31).

[30] P. Castelló, J.F. Ramos, M. Chover, A comparative study of acceleration techniques
for geometric visualization, Computational Science–ICCS 2005, Springer, Berlin
Heidelberg, 2005, pp. 240–247.

[31] S. Hillaire, Improving performance by reducing calls to the driver, OpenGL Insights,
CRC Press, 2012. 353–363.

[32] B. Dudash, Animated Crowd Rendering, GPU Gems 3, Addison-Wesley, 2007. 39–52.
[33] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B.Watson, R. Huebner, Level of Detail for

3D Graphics, Morgan Kaufmann, 2002.
[34] J. Terrace, E. Cheslack-Postava, P. Levis, M.J. Freedman, Unsupervised Conversion

of 3D Models for Interactive Metaverses, 2012 IEEE International Conference on
Multimedia and Expo (ICME), 2012, pp. 902–907.

[35] I. Leitão, M.B. Carmo, Block and Quadtree based Simplification in Tiled Blocks Terrain
Algorithms, GRAPP 2009: International Conference on Computer Graphics Theory
and Applications, 2009, pp. 205–210.

[36] J. Cohen, D. Manocha, Model Simplification, Visualization Handbook, Elsevier, 2005.
393–411.

[37] D. Cohen-Or, Y.L. Chrysanthou, C.T. Silva, F. Durand, A survey of visibility for
walkthrough applications, IEEE Trans. Vis. Comput. Graph. 9 (3) (2003) 412–431.

[38] J. Clark, Hierarchical geometric models for visible surface algorithm, Commun. ACM
19 (10) (1976) 547–554.

[39] Z. Constantinescu, Levels of detail: an overview, Nonlinear Anal. Modell. Control 5
(2000) 39–52.

[40] J.L. Posada-Velasquez, A methodology for the semantic visualization of industrial
plant CAD models for virtual reality walkthroughs(Doctoral Dissertation) TU
Darmstadt, 2006.

[41] BuildingSMART, IFC2x Edition 3 TC1, Available from: http://www.buildingsmart-
tech.org/specifications/ifc-releases/ifc2x3-tc1-release/summary2007.

[42] ExKode Dxtory, Available from: http://exkode.com/dxtory-features-en.html2013.
[43] Graphic Remedy, gDEBuggerAvailable from: http://www.gremedy.com2010.
[44] Crytek, RenderDoc, Available from: http://cryengine.com/renderdoc2014.
[45] GPU-Z, Techpowerup, Available from: http://www.techpowerup.com/gpuz/2013.
[46] wPrime Systems, P.I. Super, Available from: http://www.superpi.net/2013.
[47] D. Shreiner, OpenGL Programming Guide: The Official Guide to Learning OpenGL,

Versions 3.0 and 3.1, 7th Edition Addison-Wesley Professional, 2009.
[48] J. Bittner, P. Wonka, Visibility in computer graphics, Environ. Plan. B Plan. Des. 30

(2003) 729–755.
[49] O. Mattausch, J. Bittner, M. Wimmer, CHC++: coherent hierarchical culling

revisited, Comput. Graph. Forum 27 (2) (2008) 221–230.
[50] J. Bittner, M. Wimmer, H. Piringer, W. Purgathofer, Coherent hierarchical culling:

hardware occlusion queries made useful, Comput. Graph. Forum 23 (3) (2004)
615–624.

[51] RDF, DLL IFC Engine, Available from: http://rdf.bg/ifc-engine-dll.php2014.
[52] J.D. Macdonald, K.S. Booth, Heuristics for ray tracing using space subdivision, Vis.

Comput. 6 (6) (1990) 153–165.
[53] J. Bittner, O. Mattausch, M. Wimmer, Game-Engine-Friendly Occlusion Culling,

ShaderX7: Advanced Rendering Techniques, Charles River Media, 2009, pp. 637–653.

http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0180
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0180
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0180
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0020
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0020
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0025
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0025
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0030
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0030
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0185
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0185
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0185
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0190
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0190
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0190
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0045
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0045
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0195
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0195
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0195
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0200
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0200
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0200
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0050
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0050
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0055
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0055
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0055
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0205
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0205
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0205
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0210
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0210
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0210
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0065
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0065
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0070
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0070
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0075
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0075
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0215
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0215
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0215
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0215
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0220
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0220
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0220
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0225
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0225
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0225
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0225
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0090
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0090
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0090
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0230
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0230
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0310
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0310
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0235
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0235
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0240
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0240
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0245
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0245
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0245
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0105
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0105
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0250
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0110
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0110
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0255
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0255
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0255
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0260
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0260
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0260
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0115
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0115
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0120
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0120
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0125
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0125
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0130
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0130
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0135
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0135
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0135
http://www.buildingsmart-tech.org/specifications/ifc-releases/ifc2x3-tc1-release/summary
http://www.buildingsmart-tech.org/specifications/ifc-releases/ifc2x3-tc1-release/summary
http://exkode.com/dxtory-features-en.html
http://www.gremedy.com
http://cryengine.com/renderdoc
http://www.techpowerup.com/gpuz/
http://www.superpi.net/
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0295
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0295
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0145
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0145
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0150
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0150
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0155
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0155
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0155
http://rdf.bg/ifc-engine-dll.php
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0160
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0160
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0305
http://refhub.elsevier.com/S0926-5805(15)00052-7/rf0305

 Paper III

Integrating Occlusion Culling and Hardware Instancing for Efficient
Real-Time Rendering of Building Information Models

Mikael Johansson
Chalmers University of Technology, Gothenburg, Sweden

jomi@chalmers.se

Keywords: Real time rendering, Occlusion culling, Hardware instancing, BIM

Abstract: This paper presents an efficient approach for integrating occlusion culling and hardware instancing. The
work is primarily targeted at Building Information Models (BIM), which typically share characteristics
addressed by these two acceleration techniques separately – high level of occlusion and frequent reuse of
building components. Together, these two acceleration techniques complement each other and allows large
and complex BIMs to be rendered in real-time. Specifically, the proposed method takes advantage of
temporal coherence and uses a lightweight data transfer strategy to provide an efficient hardware instancing
implementation. Compared to only using occlusion culling, additional speedups of 1.25x-1.7x is achieved
for rendering large BIMs received from real-world projects. These speedups are measured in viewpoints that
represents the worst case scenarios in terms of rendering performance when only occlusion culling is
utilized.

1 INTRODUCTION

With the creation of Building Information Models
(BIM), the content produced by architects and
designers has evolved from traditional 2D-drawings
to semantically-rich, object-oriented 3D-models.
With all of the data available in 3D, this concept
further facilitates the use of real-time visualizations
in various contexts. However, as primarily created to
describe a complete building in detail, many 3D
datasets extracted from BIMs provides a challenge
to manage in real-time without additional
acceleration techniques (Steel et al., 2012).

In this context, occlusion culling has been shown
to provide a suitable option (Johansson and Roupé,
2012). Given that typical building models naturally
exhibit a lot of occlusion this is an efficient approach
to increase rendering performance for many
viewpoints. Still, for viewpoints where many objects
are, in fact, visible, occlusion culling alone may not
always be able to provide sufficiently high frame
rates. Common examples include exterior views of
whole building facades where the sheer number of
draw calls, and hence CPU burden, easily becomes
the limiting factor in terms of rendering performance
(Wloka, 2003).

Another characteristic of typical BIMs is the
frequent reuse of identical building components. As
similarity tends to reduce design, production and
maintenance costs, use of multiple identical
components, such as doors and windows, is common
in any building (Sacks et al., 2004). For viewpoints
where many objects are visible it is therefore a high
probability that many of these objects are identical,
albeit placed at different locations. One way to take
advantage of this is to utilize the hardware
instancing functionality of modern GPUs. With
hardware instancing it is possible to render multiple
copies of the same geometry with a single draw call,
thereby reducing CPU-burden for scenes with much
repetition. However, even if the reduction of draw
calls improves performance in CPU-limited
scenarios, the GPU still has to process all the
instantiated geometry. As such, culling of invisible
instances is still important to reduce overall
workload

This paper presents a method to integrate
occlusion culling and hardware instancing in order
to provide efficient real-time rendering of large
BIMs. By using an efficient occlusion culling
algorithm hardware instancing can be restricted to
visible replicated objects only. For viewpoints when
many objects are visible, hardware instancing
complements the occlusion culling by providing an

efficient rendering path for visible replicated objects.
The key component to realize this is an efficient
dynamic hardware instancing implementation that
takes advantage of temporal coherence and uses a
lightweight data transfer strategy.

2 RELATED WORK

2.1 Occlusion Culling

With occlusion culling the aim is to identify and
reject occluded regions of 3D scenes in order to
improve rendering performance. Within this
category of acceleration techniques a vast amount of
research has been conducted and for a general
overview interested readers are referred to the
surveys provided by (Cohen-Or et al, 2003) and
(Bittner and Wonka, 2003). In essence, available
algorithms can be classified according to whether
they require time-consuming offline computations or
not.

When considering online approaches, which
require no pre-computations, the support for
hardware accelerated occlusion queries has provided
a simple mechanism to detect visibility. With
hardware occlusion queries the GPU returns the
number of pixels that passes the depth test when
rasterizing a given object. This way, proxy
geometries can be used to detect occlusion before
the actual object is rendered. However, due to the
delayed processing in the graphics pipeline the result
of the query is not immediately available on the
CPU which makes an efficient implementation more
complex. This problem was addressed with the
Coherent Hierarchical Culling (CHC) algorithm,
which exploits spatial and temporal coherence in
order to reduce latency and overhead of the queries
(Bittner et al., 2004). However, although the CHC
algorithm works well in highly occluded scenes,
wasted queries and unnecessary state changes makes
it less reliable for viewpoints when many objects are
visible. In order to reduce the number of wasted
queries, (Guthe et al., 2006) proposed a method,
called Near Optimal Hierarchical Culling (NOHC),
based on a statistical model for occlusion probability
and a hardware calibration step. Assuming proper
hardware calibration their approach always performs
better than view-frustum culling. In (Mattausch et
al., 2008) an improved version of the CHC
algorithm, called CHC++ was presented. Although
the core ideas of the algorithm remain the same, the
additional components introduced by CHC++
provide a significant improvement in rendering

speed compared to both NOHC and CHC. Mainly,
this was achieved by introducing batching of queries
as a means to reduce costly state changes.

When considering the case of rendering complex
BIMs, the efficiency of the CHC++ algorithm has
been recently demonstrated (Johansson and Roupé,
2012). Compared to view-frustum culling, CHC++
provided significant speedups for a number of fairly
large BIMs during both interior and exterior
viewpoints.

As an alternative to occlusion queries, (Hill and
Collin, 2011) recently proposed a modern variant of
the hierarchical z-buffer (Green et al., 1993), where
all visibility tests are performed on the GPU. The
state of visibility is then read-back to the CPU, so
that un-occluded objects can be rendered in a single
stage. However, although reported as being
successfully used in recent computer games, the
performance implications are still largely unknown
for general 3D models. In addition, this approach
requires a set of good occluders in order to initiate
the z-buffer.

A problem common to practically all visibility
culling methods is that of granularity. On the one
hand, in order to maximize culling efficiency, we
ideally want to perform visibility determination on
the level of granularity provided by the individual
objects contained in a 3D scene. On the other hand,
for viewpoints with many visible objects, this is not
an optimal organization of the 3D scene, considering
the aim of keeping a low draw call count (Wloka,
2003). In this case, reduction of draw calls can often
be addressed by geometry batching, where spatially
coherent objects (with similar material properties)
are combined into larger ones during a pre-process
(Buchholz and Döllner, 2005). However, even if this
process enhance rendering performance for certain
viewpoints, it potentially reduces culling efficiency,
and hence, performance, for other viewpoints.
Besides requiring a dedicated pre-process, geometry
batching also complicates the use of additional
acceleration techniques applied per-object, such as
level-of-detail (LOD).

The proposed method addresses this situation by
performing implicit geometry batching. By taking
advantage of hardware instancing capabilities of
modern GPUs, culling can be performed at fine
granularity at the same time as the amount of draw
calls is reduced for viewpoints with many visible
objects.

2.2 Hardware Instancing

For 3D scenes where many individual objects have
to be rendered it is not uncommon that the large
number of draw calls (and related state changes and
buffer binds) becomes the limiting factor in terms of
performance (Wloka, 2003). Given a large amount
of replicated geometry, hardware instancing is one
way to address this problem. The idea behind this
concept is to use a single draw call when rendering
multiple copies of the same geometry. By using a
previously uploaded buffer or texture object
containing per-instance data (i.e. transformation
matrix), each instance can then be transformed to its
correct location on the GPU. Typical applications
that can benefit from hardware instancing include
rendering of crowds and vegetation, which usually
require a large number of instances at the same time
as there exists much repetition. In (Park et al., 2009),
(Dudash, 2007), and later (Ramos et al., 2012),
examples on how to render several thousands of
animated characters in real-time with the use of
hardware instancing is presented. Recently, (Bao et
al., 2012) presented a GPU-driven framework for
rendering large forests. Hardware instancing,
together with level-of-detail selection on the GPU,
allow them to render several thousands of detailed
trees, with shadows, in real-time.

However, even if hardware instancing reduces
the number of draw calls, and hence CPU-burden,
the GPU still have to process all the geometry that is
instantiated. Without any type of visibility culling,
this may lead to unnecessary high GPU-burden for
3D scenes with many instances. In order to limit the
number of instances, (Park et al., 2009) and (Bao et
al., 2012) perform view-frustum culling on the GPU.

Still, for highly occluded scenes, such as
Building Information Models, view-frustum culling
only allows a subset of the invisible geometry to be
rejected. The proposed method addresses this
problem by an efficient dynamic hardware
instancing implementation. By taking advantage of
temporal coherence together with a lightweight data
transfer approach, occlusion culling can be
performed at object level at the same time as
replicated geometry is efficiently rendered using
hardware instancing.

3 THE IFC BUILDING MODEL

For the majority of BIM authoring tools the
underlying data-model closely resembles that of the
Industry Foundation Classes (Eastman et al., 2011).

Instead of pure geometrical entities, this scheme
represents a building or facility in terms of its
individual building components, such as walls,
doors, windows and floors. For each component a
visual representation is then provided in the form of
one or several geometrical entities (i.e. triangular
meshes). When considering instancing, this concept
is performed at the building component level. As an
example, all instances of a specific window type will
be considered a unique building component but
share the same visual representation. For the
implementation and tests presented in this paper, no
additional processing of the input 3D-data has been
performed except organizing it in a bounding
volume hierarchy. In this hierarchy, leaf nodes
represent the individual building components. As
such, culling is performed at a granularity
corresponding to the individual building
components. However, hardware instancing is
performed at a level corresponding to the
geometrical entities that represent each component.

For the rest of this paper replicated components
that are suitable for hardware instancing are referred
to as instanceable. The specific geometry being
instanced is referred to as the geometry reference.

4 ALGORITHM OUTLINE

The proposed method consists of three main steps.
In order to give an overview of the algorithm all
three steps are briefly discussed below.

Determine visible instances Using an efficient
occlusion culling system, we inherently have access
to the set of potentially visible objects in a certain
frame. Based on the assumption that hardware
instancing is the most efficient way to render
multiple copies of the same geometry, this set is
searched for replicated components. These objects
are then scheduled for rendering with hardware
instancing in the next frame.

Upload required data to GPU Given a set of
visible objects to be rendered using hardware
instancing, per-instance data need to be uploaded to
the GPU. To reduce per-frame data transfer, an
indexed approach is used: During scene loading,
transformation matrices for all potential instances
are uploaded to the GPU. During rendering, only a
single index per instance needs to be transferred in
order to locate the corresponding transformation
matrix in GPU memory. Thus, at the end of each
frame, data in the form of indices is uploaded to the
GPU for processing during the next frame.

Render using hardware instancing At the
beginning of each frame opaque instances collected
during the previous frame are rendered using
hardware instancing. However, for semi-transparent
geometry hardware instancing introduces
complexities. As correct depth ordering no longer
can be maintained, an order-independent
transparency rendering technique (Everitt, 2001) is
needed to support hardware instancing of semi-
transparent geometry.

5 INTEGRATING OCCLUSION
CULLING AND HARDWARE
INSTANCING

As outlined, the general idea behind the proposed
method is to dynamically select candidates for
hardware instancing, based on visibility knowledge
provided by the occlusion culling system. For the
purpose of this, any efficient occlusion culling
algorithm can be used as long as it provides
visibility classification for all objects in a scene. For
the implementation and tests presented in this paper
the latest version of the Coherent Hierarchical
Culling algorithm, CHC++ has been used. This
choice is based on the simplicity of the algorithm
and the fact that it has already been proven to work
well when applied to large Building Information
Models. As such, it provides a good basis for further
enhancements. In the followings subsections the
details of the algorithm is presented, starting with a
review of the hardware instancing API together with
important aspects of the CHC++ algorithm.

5.1 Hardware Instancing API

Taking OpenGL as an example, the instancing API
extends the conventional draw call by exposing the
option to specify the number of times a particular
batch of geometry should be rendered. In the vertex
shader an internal counter (gl_InstanceID) is then
accessible which advances for each iteration. Using
the internal counter as an index, the per-instance
transformation matrix can then be sourced from any
type of previously uploaded array, texture or buffer
object. However, the arrangement of per-instance
data must reflect the fact that the internal counter
advances with a fixed step. In order to render a
specific set of instances with a single draw call, the
per-instance data must be arranged sequentially.

5.2 CHC++

The original CHC algorithm takes advantage of
spatial and temporal coherence in order to provide
efficient scheduling of hardware occlusion queries.
The state of visibility from the previous frame is
used to initiate queries in the current frame
(temporal coherence) and by organizing the scene in
a hierarchical structure (i.e. bounding volume
hierarchy) it is possible to test entire branches of the
scene with a single query (spatial coherence). While
traversing a scene in a front-to-back order, queries
are only issued for previously invisible interior
nodes and for previously visible leaf nodes of the
hierarchy. The state of visibility for previously
visible leaves is only updated for the next frame and
they are therefore rendered immediately (without
waiting for the query results to return). The state of
visibility for previously invisible interior nodes is
important for the current frame and they are not
further traversed until the query results return. By
interleaving the rendering of (previously) visible
objects with the issuing of queries, the algorithm
reduces idle time due to waiting for queries to
return.

Although the core ideas remain the same,
CHC++ introduced several optimizations which
make it perform very well even in situations with
low occlusion. Most notably, the improved version
addressed the problem of redundant state changes
due to the interleaved rendering and querying.
Instead of directly querying a node, it is appended to
a queue. When this queue reaches a certain size, the
rendering state is changed to querying and an
occlusion query is issued for each node in the queue.
In addition, this mechanism allows an application to
perform material sorting before rendering visible
objects in order to reduce costly API calls.

In order to reduce the number of queries, the
original CHC algorithm introduced an important
optimization based on temporal coherence - A
visible object is assumed to stay visible and will
only be tested for visibility again after a user-
specified amount of frames (typically 10-20). This
optimization, together with the assumption that
hardware instancing is the most efficient way to
render multiple copies of the same geometry, is the
entry-point for the proposed method. When an
object suitable for instancing is found visible, it is
scheduled to be rendered using hardware instancing
in the following frame.

5.3 Data Preparation

In a static situation, where the same set of instances
should be rendered every frame, per-instance data
can be uploaded to GPU-memory once, and then,
during subsequent draw calls, be fetched in the
vertex shader based on the value of the internal
instance counter. In the proposed approach,
however, a dynamic behaviour is needed in order to
support per-frame selection of which geometry to
render using hardware instancing. As per-instance
data needs to be arranged sequentially in order to
facilitate a single draw call per geometry reference,
this require complete or partial updates of the shared
buffer or texture every frame. In order to optimize
this process an indexed approach is used, as
explained visually in Figure 1. During scene loading,
transformation matrices for all instanceable objects
are collected and placed in a single array, denoted
M. The location of each instance’s transformation
matrix within this array is recorded for later use.
During rendering, a single index is then needed to
locate each instance’s transformation matrix within
M. For a 4x4 transformation matrix, this approach
effectively reduces the required data transfer by a
factor of 16. Both the index array (I) and matrix
array (M) are implemented as a Texture Buffer
Objects.

Figure 1: An array of indices (I) is used to locate each
instance’s transformation matrix, encoded in a single,
shared array (M).

5.4 Collecting Visible Instances

Depending on the occlusion culling algorithm of
use, the state of visibility for objects in a scene
might be known at different stages. For instance, the
GPU-based implementation of the Hierarchical Z
Buffer proposed by (Hill, 2011), resolves visibility
for all objects in a single phase in the beginning of a
frame. The CHC++ algorithm, on the other hand,
distributes this process by interleaving the rendering
of objects with the issuing of queries, effectively
delaying the complete visibility knowledge of a
scene towards the end of the frame. In order to cope
with different implementations and to provide
additional time for the required data transfer, the

rendering of instanceable geometry is deferred by
one frame. Thus, an object detected visible in frame
n will be scheduled for rendering using hardware
instancing in frame n+1. Figure 2 presents the
modifications to the original CHC++ algorithm that
is needed in order to implement this behavior. When
a node of the spatial hierarchy is found visible, the
TraverseNode function is called for its children (For
a complete picture of the algorithm the reader is
referred to the original CHC++ paper). During
traversal of an instanceable leaf node the algorithm
first checks if it is scheduled for rendering using
hardware instancing in the current frame. If this is
not the case it is rendered in a conventional way by
adding it to a render queue. In a second step, it is
scheduled for rendering using hardware instancing
in the next frame.

TraverseNode(N) {
 if isLeaf(N) {
+ if isInstanceable(N) {
+ if N.nextInstFrameId != frameId {
+ Render(N);
+ }
+ EnqueueForInstInNextFrame(N);
+ N.nextInstFrameId = frameId + 1;
+ }
+ else {
 Render(N);
+ }
 }
 else {
 DistanceQueue.PushChildren(N);
 N.IsVisible = false;
 }
};

Figure 2: Pseudo-code for the collection of visible
instances. Difference to the CHC++ algorithm is marked
in blue.

5.5 Data Transfer

At the end of frame n, a set of objects suitable for
rendering using hardware instancing in frame n+1
has been collected. As illustrated in Figure 3, this set
is sorted by geometry reference to generate a single
array of indices (I) to upload to GPU memory. Thus,
for m unique geometry references the array will
contain m regions of indices. Within each region, the
array is populated with indices corresponding to the
location of each instance’s transformation matrix in
M. While generating the array the offset to each
specific region is also recorded. This offset is needed
during rendering in order to use a single indices
array for all geometry references (Section 5.6).

During this stage, before the actual upload, the
minimum number of instances per geometry

reference is also considered. Geometry rendered
with hardware instancing uses a more complex
vertex shader and require additional data transfer,
which itself introduce a performance penalty. In
order to gain an increase in performance the
reduction of draw calls must reflect this. If the
number of collected instances per geometry
reference is below a user-defined parameter, NImin,
they are not scheduled for instancing in the next
frame. Instead the parameter nextInstFrameId
(Figure 2) is set to zero on the corresponding objects
in order to render them using a non-instanced
approach in the next frame. For the different BIMs
evaluated in this paper (Section 6), empirical tests
have shown that a minimum requirement of three (3)
instances per geometry reference is a suitable
choice. However, ultimately, this parameter should
be set per geometry reference, taking number of
triangles into account.

Figure 3: Collected instances (top) are sorted by geometry
reference (middle) to generate the final index array and
corresponding offsets (bottom). The numbers (indices)
corresponds to the location of each instance’s
transformation matrix in M.

5.6 Rendering

As based on hardware occlusion queries, the CHC++
algorithm requires that visible objects are rendered
before occluded ones in order to properly detect
occlusion. Thus, in order to preserve the state of
visibility, opaque instances are rendered using
hardware instancing in a single step at the beginning
of each frame. However, if the visibility
determination system is separated from the

conventional rendering, this step can be performed
at a later stage.

The actual rendering of all collected instances is
performed by a single draw call per geometry
reference. During this stage, the transformation
matrix array (M) and indices array (I) are bound to
the context. In Figure 4, GLSL code fragments from
the vertex shader are shown. Here, the internal
counter (gl_InstanceID) is used to fetch the current
index from the indices array (I). This index is then
used to locate the correct transformation matrix in
the transformation matrix array (M). However, when
invoking an instanced draw call, the internal counter
will start its iteration from zero (0). As a single array
is used for all indices an offset is required to define
which region to fetch values from. This offset is
recorded during the actual forming of the global
indices array (Section 5.5), and during rendering it is
supplied as a uniform per geometry reference.

uniform samplerBuffer M; //Matrices
uniform samplerBuffer I; //Indices
uniform int _offset;

void main()
{
 //Fetch index by offset
 int id = gl_InstanceID + _offset;

 int idx =
 int(texelFetchBuffer(I,id).x);

 mat4 OT =
 mat4(texelFetchBuffer(M,idx*4),
 texelFetchBuffer(M,idx*4+1),
 texelFetchBuffer(M,idx*4+2),
 texelFetchBuffer(M,idx*4+3));

 gl_Position =
 gl_ModelViewProjectionMatrix *
 OT * gl_Vertex;

 //-------------------------------
 //Other per-vertex calculations.
 //-------------------------------

};

Figure 4: Vertex shader used for the instanced rendering
path (GLSL-code).

5.6.1 Semi-Transparent Geometry

Using conventional methods, semi-transparent
geometry is rendered after opaque objects, in a back-
to-front order, using alpha blending (Akenine-
Möller et al.,2008). With hardware instancing
correct order among transparent objects can no

longer be preserved and, consequently, an order-
independent transparency rendering technique is
needed. A common technique within this category of
algorithms is depth peeling (Bavoil, 2008), where
transparent fragments are sorted by rendering the
geometry several times, peeling off one transparent
layer at a time. However, although accurate, the
performance penalty of depth peeling is rather high
which makes it unsuitable in practice. As a
performance efficient alternative, a single pass
approximation of depth peeling is suggested in
(Bavoil, 2008). The technique, referred to as
weighted average transparency, calculates the final
color as the alpha-weighted sum of colors divided by
the average alpha. When blending pixels of equal
color and transparency, this technique produces
correct results. However, when colors and
transparency values differ too much, the result of the
weighted average technique starts to deviate in terms
of correctness compared to depth peeling. Still,
despite being an approximation, it works very well
for typical building models. As the use of
transparency and color for windows and glazed
structures is usually coherent within a building, the
technique produces plausible results. Even in
situations when many transparent layers are visible,
the difference between the correct and the
approximate method is hard to detect, as seen in
Figure 5.

In the proposed method, both instanced and non-
instanced semi-transparent geometry are rendered in
a final stage each frame. For the implementation and
tests the weighted average transparency technique
has been primarily used. However, in the results
section, the findings in terms of performance for the
depth peeling approach are also reported.

6 RESULTS

The proposed method has been tested on four
different Building Information Models. The models
were created in Autodesk Revit 2012, and all four
represents planned or existing buildings (see Table 2

and 3 for detailed information). For all of the tests an
Intel Core i7 3.07 GHz CPU and an Nvidia GeForce
570 GTX graphics card was used. The CHC++
occlusion culling algorithm was used together with a
bounding volume hierarchy built according to the
surface area heuristics (Macdonald, 1990), and the
screen resolution was set to 1280 x 720. Unless
otherwise stated, the following parameters were
used: maximum triangle count for instancing
Tmax=3000, assumed visible frames Nav=20,
minimum number of instances NImin=3. The
weighted average technique (WA) was used for
rendering semi-transparent geometry when hardware
instancing (HI) was activated. Without instancing
activated semi-transparent geometry was rendered
using a conventional sort-by-object approach
(SORT). However, for the Hotel model the
performance numbers with depth peeling (DP) is
also presented.

The CHC++ algorithm has previously been
found to perform very well compared to only using
view frustum culling for typical BIMs. These
findings were confirmed for all of the test-models.
Table 1 presents a comparison of frame times for
one interior (highly occluded) and one exterior
(same as seen in the screenshots in Table 2 and 3)
viewpoint for each of the four models. As can be
seen, the CHC++ algorithm provides a significant
speedup, especially for the interior viewpoints.
Given this, subsequent tests were focused on the
worst case scenarios provided by the test models -

Table 1: Frame times (in ms) for view-frustum culling
(VFC) and occlusion culling (CHC++) for one exterior
and one interior viewpoint for each of the four test
models.

Scene
INTERIOR EXTERIOR

VFC CHC++ VFC CHC++
Library 13.1 1.9 17.2 7.5
Hospital 26.6 1.1 37.8 18.8
Student
Housing

40.1 1.2 68.2 11.3

Hotel 56.3 1.4 130.2 47.8

Figure 5: Transparency rendering modes: Depth peeling (left), Weighted average (middle) and sorted by object (right).

viewpoints when many objects are visible. In such
situations the sheer number of objects that has to be
rendered becomes the limiting factor in terms of
performance. For all test models these scenarios
were found in exterior viewpoints and a set of
camera paths were constructed accordingly. These
walkthroughs represents the worst case scenarios in
terms of rendering performance when only occlusion
culling was enabled. Table 2 (left) presents the
frame times with and without hardware instancing
enabled for the Library model. This model features a
large glazing façade and consequently, many interior
objects are visible at the same time when viewed
from the outside. Here, the camera path provides an
orbital camera movement from one side of the
building to the other, while facing the center of the
building. Compared to only using occlusion culling,
the proposed method provides an average speed-up
of 1.7x during this walkthrough. For the Hotel
model the results are similar (Table 3). However, in
this case the number of visible objects is mainly a
result of a vast façade composed by many replicated
windows, curtain wall elements and façade stones.
The walkthrough sequence is similar as for the
Library model, however, in the end interior, more
occluded regions of the building are also visited.
During these viewpoints the number of visible

instanceable objects is low and, hence, few or none
of them are rendered using hardware instancing.
Still, in such viewpoints the occlusion culling
system alone is able to deliver high performance and
the important thing to note is that the proposed
method only introduces a slight overhead, noticeable
only in terms of relative numbers. For the non-
interior parts of the walkthrough sequence an
average speed-up of 1.7x was achieved with
hardware instancing.

Table 3 also presents the performance results
with depth peeling (DP). This approach guarantees a
correct results but the performance penalty is higher
compared to the weighted average technique.
Nevertheless, compared to conventional sorting
(SORT) a 1.5x speed-up was still achieved with
instancing. On the other hand, when depth peeling
was used in both cases (instanced and non-
instanced) the average speed-up was almost 2x.

Figure 6 presents the number of draw calls with
and without hardware instancing enabled for the
Hotel model. This plot reveals the source of the
performance gain. As can be seen, the numbers of
draw calls are greatly reduced and, as a
consequence, the performance is increased.

Table 2 also presents the performance numbers
for the Hospital (middle) and Student Housing

Table 2: Statistics for three of the test models and frame times for the proposed approach with occlusion culling
(CHC++), hardware instancing (HI) and weighted average transparency (WA) compared to occlusion culling (CHC++)
and conventional sort-by-object transparency (SORT) for the predefined walkthroughs.

LIBRARY HOSPITAL STUDENT HOUSING

3,291,869 triangles 1,561,972 triangles 10,857,175 triangles

7,312 objects 18,530 objects 17,666 objects

11,195 geometry batches 22,265 geometry batches 33,455 geometry batches

0

2

4

6

8

10

12

14

1 301 601 901 1201 1501

CHC++ | SORT

CHC++ | HI | WA

TIME (ms)

FRAMES

0

5

10

15

20

25

1 301 601 901 1201 1501 1801

CHC++ | SORT

CHC++ | HI | WA

TIME (ms)

FRAMES

0

2

4

6

8

10

12

14

1 501 1001 1501 2001 2501

CHC++ | SORT

CHC++ | HI | WA

TIME (ms)

FRAMES

model (right). For the Hospital model an average
speed-up of 1.6x is achieved with instancing. For the
Student Housing model the performance gain of the
proposed method is more moderate. Although an
average speed-up of 1.25x is achieved, it is less than
expected considering the model still has a fairly
large amount of replicated components. However,
compared to the other models, the animation
sequence for the Student Housing model does not
feature viewpoints equally beneficial in terms of
instancing. First, the relative amount of visible
replicated geometry is not as high and, second, the
number of different geometry references is higher.

7 CONCLUSION

This paper has presented a simple, yet efficient
approach for integrating occlusion culling and
hardware instancing. Compared to only using
occlusion culling, average speed-ups of 1.25x – 1.7x
were achieved for all test models in viewpoints
where many objects are visible. Without dynamic
hardware instancing activated, these viewpoints
represents the worst case scenarios in terms of
rendering performance.

The only aspect to consider a limitation is the
requirement of an order-independent transparency
rendering technique for semi-transparent geometry.
A simple solution to remove this restriction would
be to skip the use of hardware instancing for
transparent geometry. Still, such geometry often
possesses characteristics suitable for hardware
instancing, which makes them tempting to include.
For the tested models the weighted average
technique was found to provide plausible results
with high performance. In addition, depth peeling
was shown to provide a viable option if a fully
correct result is important.

For future work it would be interesting to test the
proposed method together with other occlusion
culling algorithms. The CHC++, although efficient,
tightly integrates visibility determination and actual
rendering of geometry. This puts restrictions on
when collection, upload and rendering of instanced
geometry can be performed. If these restrictions
were relaxed, it is possible that a more efficient
implementation of hardware instancing could be
achieved.

Figure 6: Number of draw calls with and without
hardware instancing for the Hotel model.

Table 3: Statistics for the Hotel model and frame times
for the proposed approach with occlusion culling
(CHC++), hardware instancing (HI) and weighted
average transparency (WA) compared to occlusion
culling (CHC++) and conventional sort-by-object
transparency (SORT) for the predefined walkthrough. In
addition, the frame times for depth peeling (DP) are
presented.

HOTEL

6,176,072 triangles

41,899 objects

62,624 geometry batches

0

10

20

30

40

50

60

70

80

1 201 401 601 801 1001

TIME (ms)

FRAMES

CHC++ | DP
CHC++ | SORT
CHC++ | HI | DP
CHC++ | HI | WA

0

5000

10000

15000

20000

25000

1 201 401 601 801 1001

CHC++ | SORT

CHC++ | HI | WA

FRAMES

NUM. DRAW CALLS

Another area of further investigations would be
the parameters NImin (minimum number of
instances per geometry reference) and Tmax
(maximum number of triangles for instanced
geometries) for different scenes and hardware
setups. Although the results show that uniform
values for these parameters works in practice, it is
likely that the performance could be further
enhanced by letting NImin depend on triangle count
(i.e. demanding a higher instance count for
geometries with many triangles).

REFERENCES

Akenine-Möller, T., Haines, E., Hoffman, N. (2008). Real-
Time Rendering 3rd Edition. A. K. Peters, Ltd.,
Natick, MA, USA.

Bao, G., Li, H., Zhang, X., Dong, W. (2012). Large-scale
forest rendering: Real-time, realistic, and progressive.
Computers & Graphics, Vol. 36, Issue 3, Pages 140-
151.

Bavoil, L., Myers, K. (2008). Order Independent
Transparency with Dual Depth Peeling. Tech. rep.,
NVIDIA Corporation.

Bittner, J., Wimmer, M., Piringer, H., Purgathofer,
W.(2004). Coherent Hierarchical Culling: Hardware
Occlusion Queries Made Useful. Computer Graphics
Forum 23, 3, pages 615–624.

Bittner, J., Wonka, P. (2003). Visibility in Computer
Graphics. Environment and Planning B: Planning and
Design 30, 5, pages 729–756.

Buchholz, H., Döllner, J. (2005). View-Dependent
Rendering of Multiresolution Texture-Atlases.
Proceedings of the IEEE Visualization 2005,
Minneapolis, USA.

Cohen-Or, D., Chrysanthou, Y. L., Silva, C. T., Durand F.
(2003). A Survey of Visibility for Walkthrough
Applications. In IEEE Transactions on Visualization
and Computer Graphics 09, 3, pages 412–431.

Dudash, B. (2007). Animated crowd rendering. In GPU
Gems 3. Addison-Wesley, pages 39–52.

Eastman, C., Teicholz, P., Sacks, R., Liston, K. (2011)
BIM Handbook (2nd Edition) A guide to building
information modeling for owners, managers,
designers, engineers and contractors, John Wiley &
Sons, New Jersey.

Everitt, C. (2001). Interactive Order-Independent
Transparency. Tech. rep., NVIDIA Corporation.

Greene, N., Kass, M., Miller, G. (1993). Hierarchical
ZBuffer Visibility. In SIGGRAPH ’93, pages 231–
238.

Guthe, M., Balazs, A., Klein, R. (2006). Near Optimal
Hierarchical Culling: Performance Driven Use of
Hardware Occlusion Queries. In Eurographics
Symposium on Rendering 2006.

Hill, S., Collin, D. (2011). Practical, Dynamic Visibility
for Games. In Gpu Pro 2.

Johansson, M., Roupé, M. (2012). Real-Time Rendering
of large Building Information Models. In proceedings
of CAADRIA 2012 - Beyond Codes & Pixels, pages
647-656.

Macdonald, J. D., Booth, K. S. (1990). Heuristics for ray
tracing using space subdivision. Visual Computer 6, 6,
pages 153–65.

Mattausch, O., Bittner, J., Wimmer, M. (2008). CHC++:
Coherent Hierarchical Culling Revisited. Computer
Graphics Forum (Proceedings Eurographics 2008) 27,
2, pages 221–230.

Park, H., Han, J. (2009). Fast Rendering of Large Crowds
Using GPU. In Entertainment Computing - ICEC 2008
(Lecture Notes in Computer Science, 5309), pages
197-202.

Ramos, F., Ripolles, O., Chover, M. (2012). Continuous
Level of Detail for Large Scale Rendering of 3D
Animated Polygonal Models. In Articulated Motion
and Deformable Objects (Lecture Notes in Computer
Science, 7378), pages 194-203.

Sacks, R., Eastman, C.M., Lee, G. (2004). Parametric 3D
modeling in building construction with examples from
precast concrete. In Automation in Construction 13,
pages 291– 312.

Steel, J., Drogemuller, R., Toth, B. (2012). Model
interoperability in building information modelling. In
Software and Systems Modeling, 11, 1, pages 99-109.

Wloka, M. (2003). Batch, Batch, Batch: What Does It
Really Mean? Presentation at Game Developers
Conference 2003.

 Paper IV

From BIM to VR
Integrating immersive visualizations in the current design process

Mikael Johansson1, Mattias Roupé2, Mikael Viklund Tallgren3
1,2,3Chalmers University of Technology, Sweden

1,2,3{jomi|roupe|mikael.tallgren}@chalmers.se

This paper presents a system that allows immersive visualizations to become a
natural and integrated part of the current building design process. It is realized
through three main components: (1) the Oculus Rift - a new type of Head
Mounted Display (HMD) directed at the consumer market, (2) a real-time
rendering engine supporting large Building Information Models (BIM) that is, (3)
implemented as a plug-in in a BIM authoring software. In addition to provide
details regarding the implementation and integration of the different components
in our system, we present an evaluation of it from three different perspectives;
rendering performance, navigation interface and the ability to support fast design
iterations.

Keywords: Building Information Modeling, BIM, Virtual Reality, Real-time
rendering, HMD

INTRODUCTION
During the design process of a building, it is im-
portant that all the involved actors understand, par-
ticipate, communicate, and collaborate with each
other to obtain a high quality outcome of the de-
sign process. Hall and Tewdwr-Jones (2010) highlight
the communication difficulties between the differ-
ent stakeholders in the design and planning process.
Communication difficulties mainly occur as a result
of the different planning cultures, and because there
is insufficient collaboration and information sharing
during the process. The most common problem is
that the information is not presented in such a way
that people can understand it.

In this context, real-time visualizations and Vir-
tual Reality (VR) have been shown to offer an effi-

cient communication platform (Bouchlaghem et al.,
2005). With the ability to navigate freely through
3D scenes from a first-person perspective, it is possi-
ble to present and communicate ideas regarding fu-
ture buildings in a way that facilitates understanding
among all involved parties, despite their background
or professional expertise. While the use of this tech-
nology has been naturally limited in the past due to
lack of available 3D data from the design process, the
recent introduction of Building Information Models
(BIM) within the AEC field has opened up new pos-
sibilities. With the use of BIM the required 3D data
can be extracted from the architect's own design-
environment, instead of creating it from scratch us-
ing 2D-plans, elevations and sketches as a reference.
Because of this, use of real-time visualizations has be-

Contribution 195 (Preprint) - figure and table placement subject to change- eCAADe 32 | 1

come more accessible in practice.
To further enhance user experience it is com-

monly advocated to take advantage of immersive
display technologies. Although real-time visualiza-
tions have been shown to be useful per se, stere-
oscopy, large screen and wide field of view all pro-
vide additional benefits. When comparing a non-
immersive (monitor) solution to a four-screen (3walls
and a floor) CAVE solution, Shiratuddin et al. (2004)
found consistently higher ratings for the latter re-
garding level of realism, ease of navigation, sense of
scale and overall suitability for design and decision-
making tasks.

In this context, Head Mounted Displays (HMD)
also represents a viable option. Still, as avail-
able alternatives (until very recently) have been ei-
ther low-cost-low-performance or high-cost-high-
performance devices (Dörner et al., 2011), CAVEs and
PowerWalls have emerged as the de facto standard
when it comes to immersive visualizations. When
considering practical applications, these types of so-
lutions have been shown beneficial during the de-
sign of hospital patient rooms and courtrooms, as
well as for design review sessions in general (Cas-
tronovo et al., 2013).

However, when considering the integration and
use of immersive VRwithin the actual design process,
the current adaptation in the AEC field still suffers
from a number of limitations:

• High cost: Even if the cost of display and PC
hardware has been rapidly decreasing over
the past years, fully or semi-immersive solu-
tions such as CAVEs or PowerWalls are still ex-
pensive (DeFanti et al., 2011).

• Limited accessibility: Regardless of dis-
play technology (e.g. immersive or semi-
immersive), the use of a specific room or stu-
diowill naturally restrict visualization sessions
to a single location. Even if situated close to
the designers working environment it makes
the use of VR less accessible, both physically
and mentally. This immobility has also been

reported inconvenient for clients and other
stakeholders (Sunesson et al., 2008).

• LimitedBIM-support: Even if createdwith vi-
sualization in mind, real-time constraints and
stereo rendering often require the input 3D
data to be further optimized in order to be
fully functional in the VR environment. When
considering BIMs this process typically be-
comes even worse due to a large number of
individual objects and high geometric com-
plexity (Dalton and Parfitt, 2013). In addition,
manyBIMauthoring applicationshave limited
or missing support for materials and texture
definitions when exporting 3D-data for visu-
alization purposes (Kumar et al., 2011).

In this paper we present a solution that overcomes
the above mentioned limitations and allows immer-
sive VR to become a natural and integrated part of
the design process. It is realized through three main
components: (1) the Oculus Rift Head Mounted Dis-
play (HMD) - a comparably low cost device that sup-
ports a large field of view, stereoscopic viewing and
physically rotation, (2) an efficient real-time render-
ingengine supporting large3Ddatasets that is (3) im-
plemented as a plug-in in a BIM authoring software.

APORTABLE SYSTEMFOR IMMERSIVE BIM
VISUALIZATION
Figure 1 shows the different components of our pro-
posed system: The Oculus Rift HMD, the real-time
viewer application implemented as a plug-in in Revit
Architecture and a so-called PowerPoint remote con-
trol used as a navigation interface, all connected to a
lightweight laptop. In the following subsections we
present and discuss these components in more de-
tail.

TheOculus Rift HMD
In order to provide an immersive visualization en-
vironment our proposed system takes advantage of
the Oculus Rift HMD. The Rift is a new affordable (ex-
pected price range $300-$350) virtual reality device

2 | eCAADe 32 - Contribution 195 (Preprint) - figure and table placement subject to change

Figure 1
System overview;
the Oculus HMD,
the Revit Viewer
plug-in and the
PowerPoint remote
control

directed at the consumer's market, mainly to provide
immersive experiences for videogames. Although
currently only available in the formof aDeveloper Kit,
it is expected to be available on the broad consumer
market during 2015. The device provides approxi-
mately 100° field of view, stereoscopic 3D view and
includes a gyroscope, an accelerometer and a mag-
netometer to determine the orientation of the user's
head in the real world.

As with any other stereo-providing display solu-
tion the 3d scene has to be rendered twice, once for
each eye. In the case of the Rift this is implemented
by means of split-screen rendering, where the left
half of the screen corresponds to the left eye, and vice
versa. With a full-screen resolution of 1280 x 800 pix-
els, this gives an effective resolution of 640 x 800 per
eye.

However, although this approach to support
stereo vision is conceptually simple, the actual ren-
dering process is a bit more involved. Due to the
lenses, which provide an increased field of view, a
pincushion distortion of the image is introduced. To
cancel out this effect, the rendering has to be done
at a higher resolution, followed by a post-processing
step that performs a barrel distortion. Preferably, an-
tialiasing should also be enabled, as this greatly en-
hances the image quality.

So, in effect, even if the devices' resolution is
"only" 1280 x 800 pixels, the actual rendering (rasteri-

zation) has to be performed at a much higher resolu-
tion (i.e. 2194 x 1371) , potentially with antialiasing
enabled, followed by a full-screen post-processing
step. Obviously, these requirements put addition-
ally stress on the graphics hardware, which, in turn,
put high demands on a rendering engine to deliver
enough rendering performance to support an inter-
active experience.

The rendering engine
An important property for any type of real-time visu-
alisation system is its ability to maintain a sufficiently
high frame rate. For typical desktop applications (i.e.
non-immersive) 15Hz is often considered aminimum
(Yoon et al. 2008), although 30 or 60 Hz is generally
advocated in order to provide a satisfactory level of
interactivity. However, for HMDs, such as the Ocu-
lus Rift, the minimum interactivity-demands are typ-
ically higher, as physical interaction and display up-
date becomes much more integrated. Ultimately, a
user's headmovement should directly correspond to
an update of the display in order to reduce the risk of
potential conflicts between visual-vestibular sensory.
In this context a minimum frame rate of 60 Hz is of-
ten recommended (Adelstein et al., 2003), although
higher values have alsobeenproposed (Jerald, 2010).

When considering that the task of visualizing
BIMs interactively is known to be a challenge in it-
self (Steel et al., 2012; Johansson and Roupé, 2012),

Contribution 195 (Preprint) - figure and table placement subject to change- eCAADe 32 | 3

Figure 2
The viewer plug-in
interface in Revit

the frame rate requirements posed by using an HMD
thusput veryhighdemandson the renderingengine.
This, especially, as the 3D dataset has to be rendered
twice every frame in order to support stereoscopic vi-
sion, followed by a full-screen post-processing step.

To address these requirements we have devel-
oped an efficient rendering engine that takes advan-
tage of two characteristics shared by typical building
models - high level of occlusion and frequent reuse
of identical building components. The engine, which
is described in more detail in (Johansson and Roupé,
2012) and (Johansson, 2013), uses an efficient occlu-
sion culling algorithm to restrict rendering efforts to
visible objects only, and takes advantageof hardware
instancing to render replicated building components
efficiently. These two acceleration techniques com-
plement each other and are essential in order to fulfil
the requirements in terms of interactivity. However,
we do not primarily use this rendering engine in a
separate application. To support an integrated de-
sign environmentwe have instead implemented it as
a viewer plug-in in Autodesk Revit.

The Revit plug-in
Figure 2 illustrates how our viewer plug-in is inte-
grated in Revit from a user's perspective. With a BIM
loaded in Revit the viewer is initialized from the Add-
Ins tab, resulting in the real-time 3D visualization rep-
resentation becoming visible in a newwindow. After
that a user is free to either navigate the model in a
typical desktop fashion using mouse and keyboard,
or connect the Oculus HMD to experience themodel
immersively.

From a programmers point of view the plug-
in extracts the required 3D data through the Re-
vit C# API, which exposes the entire underlying BIM
database. To speed-up the data extraction process
and to keep the memory footprint low, we take ad-
vantage of geometry instancing (i.e. that several
identical components can share the same geomet-
rical representation), which is an integral part of the
internal Revit database. Every time a unique geomet-
ric representation is encountered for the first time, all
of its data is extracted. For all subsequent cases the
previously extracted geometry data is used in combi-
nation with a unique transformation.

4 | eCAADe 32 - Contribution 195 (Preprint) - figure and table placement subject to change

As the rendering engine and the Oculus API is
written in C++, the different software components
needs to be connected through a C++/Cli bridge
(Heege, 2007). The complete architecture is illus-
trated in Figure 3 and also shows how the GUI-
module is separated from the actual plug-in, essen-
tially allowing us to run the viewer as a standalone
application on a system without Revit installed, with
identical interface.

Figure 3
System architecture

Previous versions of the Revit API did not expose
material data such as colors and textures, making it
very difficult to use BIMs, without further treatment,
for visualization sessions related to aesthetics. Fortu-
nately, since version 2014, theAPI has been extended
with a Custom Export API, that facilitates the extrac-
tion ofmaterial and texture data aswell as texture co-
ordinates. Because of this, it is now possible to ex-
tract complete visualization models, with materials
and textures assigned, directly from the BIM author-
ing software.

The navigation interface
The use of an HMD makes traditional navigation in-
terfaces, such as ones with keyboard and a mouse
harder to master. As the user cannot see anything
in the real world, even seemingly simple tasks, such
as pressing a specific key on the keyboard or even
grabbing the mouse becomes much more involved.
For very experienced users that daily works with, and

navigates in, 3D models this does not necessarily
pose itself as aproblem, however, for peoplewith less
experience it can easily become a huge obstacle.

In order to allow for any type of user we have
therefore developed a very simple navigation inter-
face bymeans of a so-called PowerPoint remote con-
trol. As illustrated in Figure 4, a user can move for-
ward or back by pressing the corresponding buttons
on the remote control, with the direction of move-
ment being decided by the user's orientation of the
head.

SYSTEM EVALUATION
To illustrate the effectiveness of our proposed system
we present an evaluation of it from three different
perspectives - rendering performance, navigation in-
terface and the ability to support fast design itera-
tions. As test-model we have used a BIM received
from a real-world project, a ten-story office building
which is currently being built in Gothenburg, Swe-
den (Figure 2). The model is primarily an architec-
tural model, with noMechanical, Electrical or Plumb-
ing (MEP) data present, however it does contain fur-
niture and other interior equipment (See Figure 5).
The model was created in Revit Architecture 2013
and contains approximately 4,400,000 triangles, dis-
tributed over 15,000 individual objects.

Figure 4
The navigation
interface

Contribution 195 (Preprint) - figure and table placement subject to change- eCAADe 32 | 5

Figure 5
Interior viewpoint
at the third level of
the test-model

Rendering performance
The rendering performance test was performed on
two different computers, one workstation and one
laptop. The workstation was equipped with an Intel
i7 3.06 GHz CPU, 6 GB of RAM and an Nvidia GeForce
GTX 570 GPU running Windows 7 x64. The laptop
was equipped with an Intel i7 1.9 GHz CPU, 4 GB of
RAM and an Nvidia GeForce GT 620M GPU running
Windows 8 x64. On both system, two different cam-
era paths was used; one interior at the third floor of
the building, and one exterior at the ground-level in
front of the building. The results from these tests are
presented in Figure 6. To better illustrate the per-
formance gain offered by our rendering engine we
alsopresentperformance results obtainedwhenonly
view frustum culling is enabled (i.e. only discarding
objects that are outside the cameras view frustum).
The followingabbreviations areused (andcombined)
in the plots: OC forOcclusionCulling, HI for Hardware
Instancing, VFC for View Frustum Culling, and MSAA
for 4x MultiSample AntiAliasing.

As can be seen in the plots, the use of additional
acceleration techniques is vital in order to provide
the required level of interactivity. Withonly view frus-
tum culling enabled (VFC) it becomes very difficult to
guarantee a minimum frame rate of 60 Hz, even on
the workstation system. In fact, for the given camera
paths, not even 20Hz canbeguaranteedonboth sys-
tems.

However, with the combined use of occlusion
culling (OC) and hardware instancing (HI) it is possi-
ble to fulfil the interactivity demands. The only ex-

ception appears during parts of both camera paths
on the laptop system when antialiasing is enabled.
Although not by much (the lowest recorded frame
rates are 52 Hz and 48 Hz, respectively) it is defi-
nitely below our target frame rate of 60 Hz. Still,
as antialiasing-capacity scale well with GPU perfor-
mance (which is not necessarily the case with 3D
model complexity due to driver overhead), we ex-
pect this particular issue to be solved by increasingly
faster GPUs. This, especially when also considering
that these tests were performed on a, at the time of
writing, two year old laptop.

Nevertheless, without antialiasing activated, our
rendering engine canprovide the required level of in-
teractivity, even on a lightweight laptop system.

Navigation interface
As part of a different, but related, research project
we have performed an initial evaluation of the nav-
igation interface with members of the on-site team
that is currently erecting the real building. This group
of people included the site manager as well as five
construction workers from different sub-trades (pip-
ing, ventilation, sprinklers, prefab and electrical). No
one, except for the site manager, had any previous
experience from working with, or navigating in, 3D-
models. While freely navigating and inspecting the
digital representation of the building that they were
currently erecting, theywere askedquestions regard-
inghow they felt that this typeof interface couldhelp
them extract information to support their daily work
and what additional features they would like the sys-
tem to have. Except for the electrical trade worker,
they all expressed that this type of visual interface
helped them to get a better understanding, not only
in terms of specific details, but also for the project as
a whole.

However, perhaps more interesting in this con-
text, is the fact that we observed that all of them, in-
cluding the electrical tradeworker, were able to navi-
gate in themodel with ease. Based on our own previ-
ous experience we know that this is typically not the
case when inexperienced people are faced with the

6 | eCAADe 32 - Contribution 195 (Preprint) - figure and table placement subject to change

Figure 6
Frame rates for the
exterior (top) and
interior (bottom)
camera paths on
the workstation
(left) and the laptop
(right) system
(OC=Occlusion
Culling,
HI=Hardware
Instancing,
MSAA=4xMultiSample
AntiAliasing,
VFC=View Frustum
Culling).

task of navigating in a 3D-model using the keyboard
and a mouse (i.e. mouse-look and WASD).

Design iterations
The benefit of having the visualization environment
closely connected to the BIM authoring environment
becomes especially clear when considering rapid de-
sign iterations. To illustrate this we will provide two
concrete examples applied to our test-model: one is
the change of window types on one of the facades
and theother is the removal of two conference rooms
on the third floor in order to extend the office land-
scape area.

Although solutions have been proposed where
it is possible to modify architectural models directly
in an immersive environment (Schulze et al., 2014),
these systems typically only support insertion and
repositioning of pre-made objects or creation and

modification of simple geometry. In contrast, our
examples are much more involved, as they include
operations on fairly complex objects that also affect
other objects. For instance, when changingwindows
to a type that is geometrically smaller or larger, the
geometry for the host object, the wall, needs to be
recomputed in order for the opening size to match
the correspondingwindow size. Although such func-
tionality would have been technically possible to
implement in our viewer, we have instead focused
on making the "conversion" from design-model to
visualization-model as fast as possible. In the case of
our test model, this process takes approximately 20
seconds. That is, regardless of modification, the only
time needed to produce a new version of the immer-
sive visualization will be the time required to make
the actualmodifications in Revit, plus 20 seconds. For
the examples described above this time corresponds

Contribution 195 (Preprint) - figure and table placement subject to change- eCAADe 32 | 7

Figure 7
Before (left) and
after (right) rapid
design
modifications. Top
row illustrates
removal of
conference room.
Bottom row
illustrates change of
window types.

to 3 minutes and 2.5 minutes, respectively. In Figure
7, these twomodifications are illustratedwith "before
and after" screenshots.

CONCLUSIONS AND FUTUREWORK
Wehavepresenteda systemthat allows immersive vi-
sualization to become a natural and integrated part
of the building design process. By using the Ocu-
lus Rift HMD we are able to provide an immersive vi-
sualization environment without the need of a ded-
icated facility to host a PowerWall or CAVE installa-
tion. In addition to greatly reduce investment costs,
this feature also makes the use of VR within a project
become physically more accessible. As the technol-
ogy is portable, clients and design team members
can take advantage of immersive visualization ses-
sionswithout the need to travel to a specific location.

To further address accessibility, we have devel-
oped a rendering engine capable of managing large
and complex 3D datasets in real-time. As a result
we can directly visualize large and complex BIMs, in
stereo,without theneed tomanually optimizeor pre-
pare the input dataset. To support an integrated de-
sign environment this rendering engine has been im-
plemented as a viewer plug-in in Autodesk Revit. Be-

cause of this, immersive design review sessions can
be performed directly in the BIM authoring software
without the need to export any data or create a sep-
arate visualization model.

In addition, we have presented an initial evalu-
ation of the proposed system with a BIM received
from a real-world project. Regarding rendering per-
formance, navigation interface and the ability to sup-
port fast design iterations, we have shown that it has
all the needed properties in order to function well in
practice.

For future work we are considering several dif-
ferent directions, including studies related to spatial
understanding with HMDs, enhancement of the in-
teraction interface, investigation of benefits with our
system in different contexts (i.e. design review, plan-
ning, on-site information extraction, etc.) as well as
further research to improve rendering performance.

REFERENCES
Adelstein, BD, Lee, TG and Ellis, SR 2003 'Head

tracking latency in virtual environments: psy-
chophysics and amodel', In Proceedings of theHu-
man Factors and Ergonomics Society AnnualMeet-
ing, pp. 2083-2087

8 | eCAADe 32 - Contribution 195 (Preprint) - figure and table placement subject to change

Bouchlaghem, D, Shang, H, Whyte, J and Ganah, A
2005, 'Visualisation in architecture, engineering
and construction (AEC)', Automation in Construc-
tion, 14, pp. 287-295

Castronovo, F, Nikolic, D, Liu, Y and Messner, JI 2013
'An evaluation of immersive virtual reality sys-
tems for design reviews', Proceedings of the 13th
International Conference on Construction Applica-
tions of Virtual Reality

Dalton, B and Parfitt, M 2013 'Immersive Visualization
of Building Information Models', Design Innova-
tionResearchCenterworkingpaper6, University of
Reading, UK

DeFanti, T, Acevedo, D, Ainsworth, RA, Brown, MD,
Cutchin, S, Dawe, G, Doerr, KU and Johnson, A
2011, 'The Future of the CAVE', Central European
Journal of Engineering, 1, pp. 16-37

Dörner, R, Lok, B and Broll, W 2011, 'Social Gaming
and Learning Applications: A Driving Force for
the Future of Virtual and Augmented Reality?', in
Coquillart, S (eds) 2011, Virtual Realities, Springer,
pp. 51-76

Hall, P and Tewdwr-Jones, M 2010, Urban and Re-
gional Planning, Routledge

Heege,M2007, ExpertC++/CLI:NET forVisualC++Pro-
grammers, Apress

Jerald, JJ 2010, Scene-motion-and latency-perception
thresholds for head-mounted displays, Ph.D. The-
sis, University of North Carolina

Johansson, M 2013 'Integrating Occlusion Culling
and Hardware Instancing for Efficient Real-Time
Rendering of Building Information Models', Inter-
national Conference on Computer Graphics Theory
and Applications (GRAPP 2013), pp. 197-206

Johansson, M and Roupé, M 2012 'Real-Time Ren-
dering of Large Building Information Models',
CAADRIA 2012 - Beyond Codes & Pixels, pp. 647-
656

Kumar, S, Hedrick, M, Wiacek, C and Messner, JI
2011, 'Developing an experienced-based design
reviewapplication for healthcare facilities using a
3d game engine', Journal of Information Technol-
ogy in Construction (ITcon), 16, pp. 85-104

Schulze, JP, Hughes, CE, Zhang, L, Edelstein, E and
Macagno, E 2014 'CaveCAD: a tool for architec-
tural design in immersive virtual environments',
Proceedings of SPIE 9012, The Engineering Reality
of Virtual Reality 2014

Shiratuddin, MF, Thabet, W and Bowman, D 2004
'Evaluating the effectiveness of virtual environ-
ment displays for reviewing construction 3D
models', Proceedings of CONVR 2004, pp. 87-98

Steel, J, Drogemuller, R and Toth, B 2012, 'Model in-
teroperability in building informationmodelling',
Software & SystemsModeling, 11, pp. 99-109

Sunesson, K, Allwood, CM, Paulin, D, Heldal, I, Roupé,
M, Johansson, M and Westerdahl, B 2008, 'Virtual
Reality as aNewTool in theCity PlanningProcess',
Tsinghua Science & Technology, 13, pp. 255-260

Yoon, SE, Gobbetti, E, Kasik, D and Manocha, D 2008,
Real-Time Massive Model Rendering, Morgan &
Claypool Publisher

Contribution 195 (Preprint) - figure and table placement subject to change- eCAADe 32 | 9

 Paper V

Journal of Computer Graphics Techniques Vol. 5, No. 3, 2016 http://jcgt.org

Efficient Stereoscopic Rendering of
Building Information Models (BIM)

Mikael Johansson
Chalmers University of Technology, Sweden

Figure 1. A building information model (BIM) taken from a real-world project rendered at
more than 90 frames per second using the stereo rendering techniques presented in this paper.

Abstract

This paper describes and investigates stereo instancing—a single-pass stereo rendering tech-
nique based on hardware-accelerated geometry instancing—for the purpose of rendering build-
ing information models (BIM) on modern head-mounted displays (HMD), such as the Oculus
Rift. It is shown that the stereo instancing technique is very well suited for integration with
query-based occlusion culling as well as conventional geometry instancing, and it outperforms
the traditional two-pass stereo rendering approach, geometry shader-based stereo duplication,
as well as brute-force stereo rendering of typical BIMs on recent graphics hardware.

1. Introduction

The advent of building information models (BIM) and consumer-directed HMDs,
such as the Oculus Rift and HTC Vive, has opened up new possibilities for the use

1 ISSN 2331-7418

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Stereoscopic Rendering of Building Information Models (BIM)

Vol. 5, No. 3, 2016
http://jcgt.org

of virtual reality (VR) as a natural tool during architectural design. The use of BIM
allows a 3D scene to be directly extracted from the architect’s own design environ-
ment and, with the availability of a new generation of VR-systems, architects and
other stakeholders can explore and evaluate future buildings in 1:1 scale through an
affordable and portable interface.

However, given the rendering-performance demands posed by modern HMDs, the
use of BIMs in a VR setting remains a difficult task. With BIMs being primarily cre-
ated to describe a complete building in detail, many 3D datasets extracted from them
provide a challenge to manage in real-time if no additional acceleration strategies are
utilized [Johansson et al. 2015]. In this context, a combination of occlusion culling
and hardware-accelerated geometry instancing has been shown to provide a suitable
option in a non-stereo environment [Johansson 2013]. This approach could be adapted
to a stereo setup simply by performing two rendering passes of the scene, one for the
left eye and one for the right eye. However, this would still require an additional and
equal amount of rendering time, as the number of occlusion tests, rasterized triangles,
and issued draw calls would increase by a factor of two.

In order to remove the requirement of a second pass, the concept of stereo in-
stancing has recently gained a lot of attention within the game development com-
munity [Wilson 2015; Vlachos 2015]. Stereo instancing refers to a technique where
hardware-accelerated geometry instancing is used to render left and right stereo pairs
during a single pass.

In this paper, a more detailed description of the stereo instancing technique is
provided together with a thorough performance evaluation using real-world datasets.
Furthermore, the stereo instancing technique is used to extend the work in [Johansson
2013] in order to provide efficient stereoscopic rendering of BIMs. It is shown that
stereo instancing works very well in combination with occlusion culling based on
hardware-accelerated occlusion queries in a split-screen stereo setup. In addition,
the use of hardware-accelerated instancing is generalized to support both replicated
geometry as well as single-pass generation of stereo pairs.

2. Stereoscopic Rendering, Bottlenecks, and Acceleration Techniques

Any true stereoscopic display solution requires that the user be presented with dif-
ferent images for the left and right eye. In the case of the Oculus Rift, this is imple-
mented with split-screen rendering, where an application renders the image for the
left eye into the left half of the screen, and vice versa. However, due to the lenses,
which provide an increased field of view, a pincushion distortion of the image is in-
troduced. To cancel out this effect, the rendering has to be done at a higher resolution,
followed by a post-processing step that performs a barrel distortion. In Figure 2, the
Oculus stereo rendering pipeline is illustrated.

2

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Stereoscopic Rendering of Building Information Models (BIM)

Vol. 5, No. 3, 2016
http://jcgt.org

Figure 2. A typical stereo rendering pipeline for the Oculus Rift.

In addition to requiring two distinct views of the scene every frame, stereoscopic
rendering targeting head-mounted displays (HMDs) typically has much higher inter-
activity demands compared to monoscopic, desktop applications. With the introduc-
tion of the consumer versions of both the Oculus Rift and HTC Vive, the minimum
frame rate has been set to 90 Hz, which corresponds to a maximum frame time of
11.1 ms.

Traditionally, stereo rendering has almost exclusively been implemented as two
independent, serial rendering passes, effectively doubling the geometry workload
on both the CPU and the GPU. When considering ways to improve rendering per-
formance in such a setup, we can generalize the situation in a similar fashion as
Hillaire [2012]; if an application is CPU-bound, its performance will be mostly in-
fluenced by the number of draw calls and related state changes per frame. If, on the
other hand, the application is GPU-bound, its performance will be influenced by the
number of triangles drawn every frame and the complexity of the different shader
stages.

As with monoscopic rendering, there are several different acceleration techniques
that can potentially be utilized if the performance requirements are not met. Common
examples include level-of-detail (LOD) to reduce the geometric complexity of distant
objects; frustum, occlusion, or contribution culling to reduce the number of objects
to render; hardware-accelerated instancing to reduce the number of draw calls when
rendering replicated geometry; and geometry batching to render groups of primitives
with as few draw calls as possible. An option more unique to stereoscopic rendering is
to use the geometry shader to render left and right stereo pairs from a single geometry
pass [Marbach 2009]. The geometry shader supports multiple outputs from a single

3

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Stereoscopic Rendering of Building Information Models (BIM)

Vol. 5, No. 3, 2016
http://jcgt.org

input as well as functionality to redirect output to a specific viewport. Consequently, a
single draw call per batch of geometry is sufficient in order to produce both the left and
right eye projection. However, even if this reduces the CPU-burden—by reducing the
number of draw calls as well as related state changes—the geometry shader typically
introduces significant overhead on the GPU.

3. Stereo Instancing

As the name implies, stereo instancing takes advantage of hardware-accelerated ge-
ometry instancing in order to produce both the left- and right-eye version of the scene
during a single rendering pass. With the instancing capabilities of modern GPUs,
it is possible to produce multiple output primitives from a single input, without in-
troducing the geometry shader. To support stereo instancing, an application only
needs to replace conventional draw calls (i.e., glDrawArrays) with instanced ones
(i.e., glDrawArraysInstanced), providing two (2) as the instance count. Based on
the value of the instance counter in the vertex shader (i.e., gl_InstanceID being zero,
repectively one), each vertex can then be transformed and projected according to the
left or right eye, respectively.

However, the main difficulty with this approach is that unextended OpenGL cur-
rently does not support multiple viewport outputs from (within) the vertex shader.
Fortunately, this can be solved by performing a screen-space transformation of the
geometry, together with user-defined clipping planes. The screen-space transforma-
tion procedure used in this paper is similar to that in [Trapp and Döllner 2010], but
it is performed in the vertex shader instead of in the geometry shader. As illustrated
in Figure 3, the extent of a single viewport in OpenGL will range from [−1, 1] in
normalized device coordinates (NDC) for both the x- and y-coordinates. In order to

Figure 3. The extent of the simulated left (red) and right (green) viewports, as well as the real
viewport (black) in normalized device coordinates (NDC).

4

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Stereoscopic Rendering of Building Information Models (BIM)

Vol. 5, No. 3, 2016
http://jcgt.org

simulate the concept of two side-by-side viewports in the vertex shader, the idea is
to perform a screen-space transformation so that the x-coordinates of the left- and
right-eye geometry will range from [−1, 0] and [0,−1], respectively, in NDC. List-
ing 1 provides GLSL vertex shader code for this process. A vertex v (x,y,z,w) is first
transformed into 4D homogenous clip space (CS) by the left or right model-view-
projection (MVP) matrix. This is followed by a division by the homogenous vector
component w in order to further transform it into NDC. In NDC, the x-coordinate is
then mapped from [−1, 1] to either [−1, 0] (left) or [0, 1] (right). Finally, the NDC-
transformed vertex has to be transformed back to CS. In addition, a user-defined clip
plane is used to restrict rendering within either one of the two simulated viewports.
The code in Listing 1 assumes that a single full screen viewport has been previously
defined on the client side.

#version 430 core

layout (location = 0) in vec3 position3;

//ViewProj matrix (left and right):

uniform mat4 viewProjMatrixLeft, viewProjMatrixRight;

uniform mat4 modelMatrix; //The Model matrix

//Frustum plane coefficients in World-Space:

uniform vec4 leftEyeRightPlaneWS, rightEyeLeftPlaneWS;

void main() {

vec4 vertPos = vec4(position3, 1.0);

vec4 vertPosWS = modelMatrix * vertPos;

if(gl_InstanceID < 1) { //Left eye

vec4 v = viewProjMatrixLeft * vertPosWS; //Transform to CS

vec4 vPosNDC = v/v.w; //...and further to NDC

float xNew = (vPosNDC.x-1.0)/2.0; //X from [-1,1] to [-1,0]

vPosNDC.x = xNew;

gl_Position = vPosNDC*v.w; //Transform back to CS

//Additional clip plane to the right

gl_ClipDistance[0] = dot(vertPosWS, leftEyeRightPlaneWS);

}

else { //Similar code as above, but for the right eye

vec4 v = viewProjMatrixRight * vertPosWS;

vec4 vPosNDC = v/v.w;

float xNew = (vPosNDC.x+1.0)/2.0; //X from [-1,1] to [0,1]

vPosNDC.x = xNew;

gl_Position = vPosNDC*v.w;

gl_ClipDistance[0] = dot(vertPosWS, rightEyeLeftPlaneWS);

}

}

Listing 1. GLSL vertex shader illustrating stereo instancing.

Depending on hardware, the screen-space transformation and custom clipping in
Listing 1 can be omitted in order to simplify the vertex shader. Both Nvidia and AMD

5

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Stereoscopic Rendering of Building Information Models (BIM)

Vol. 5, No. 3, 2016
http://jcgt.org

provide OpenGL extensions that allow access to multiple defined viewports in the ver-
tex shader in a similar fashion as for the geometry shader (i.e., NV_viewport_array2
and AMD_vertex_shader_viewport_index).

Still, as in the case with stereo duplication in the geometry shader, stereo instanc-
ing does not reduce the number of triangles that needs to be rendered every frame. As
a consequence, the sheer amount of geometry that needs to be transformed, rasterized,
and shaded every frame, may very well become the limiting factor.

3.1. Integration with Occlusion Culling and Conventional Instancing

In [Johansson 2013], a combination of occlusion culling and hardware-accelerated ge-
ometry instancing was used in order to provide efficient real-time rendering of BIMs.
In essence, CHC++ [Mattausch et al. 2008], an efficient occlusion culling algorithm
based on hardware-accelerated occlusion queries, was extended to support instanced
rendering of unoccluded replicated geometry.

The original CHC++ algorithm takes advantage of spatial and temporal coherence
in order to reduce the latency typically introduced by using occlusion queries. The
state of visibility from the previous frame is used to initiate queries in the current
frame (temporal coherence) and, by organizing the scene in a hierarchical structure
(i.e., bounding volume hierarchy), it is possible to test entire branches of the scene
with a single query (spatial coherence). While traversing a scene in a front-to-back
order, queries are only issued for previously invisible interior nodes (i.e., groups of
objects) and for previously visible leaf nodes (i.e., singular objects) of the hierarchy.
The state of visibility for previously visible leaves is only updated for the next frame,
and they are therefore rendered immediately (without waiting for the query results
to return). However, the state of visibility for previously invisible interior nodes is
important for the current frame, and they are not further traversed until the query
results return. By interleaving the rendering of (previously) visible objects with the
issuing of queries, the algorithm reduces idle time due to waiting for queries to return.

To integrate hardware-accelerated instancing within this system, the visibility
knowledge from the previous frame is used to select candidates for instanced ren-
dering in the current frame. That is, replicated geometry found visible in frame n is
scheduled for rendering using instancing in frame n + 1. For viewpoints with many
objects visible, the proposed solution was shown to offer speed-ups in the range of
1.25x-1.7x compared to only using occlusion culling, mainly as a result of reducing
the number of individual draw calls.

When considering ways to adapt the work presented in [Johansson 2013] to a
stereo setup, the properties of the stereo instancing technique offer great opportuni-
ties. As it turns out, the combination of single-pass stereo-pair generation, hardware-
accelerated occlusion queries, and a split-screen setup becomes an almost perfect fit.
With a single depth buffer used for both the left and right eye, only a single occlusion

6

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Stereoscopic Rendering of Building Information Models (BIM)

Vol. 5, No. 3, 2016
http://jcgt.org

query is ever needed per visibility test. That is, when a bounding box representing
an interior or leaf node of the spatial hierarchy is simultaneously rendered to both the
left and right viewport, a single occlusion query will report back a positive number if
either one of the representations (i.e., left or right) turns out to be visible. So, com-
pared to a two-pass approach, not only the number of draw calls and state changes but

#version 430 core

#extension GL_EXT_gpu_shader4 : require

#extension GL_NV_viewport_array2 : require

layout (location = 0) in vec3 position3;

//ViewProj matrix (left and right):

uniform mat4 viewProjMatrixLeft, viewProjMatrixRight;

uniform samplerBuffer M; //Matrices

uniform samplerBuffer I; //Indices

uniform int offset; //Per-geometry type offset into I

void main() {

int leftOrRight = gl_InstanceID%2;

float glInstanceIDF = float(gl_InstanceID);

float instanceID_Stereo = int(floor(glInstanceIDF/2.0));

int instance_id_offset = offset+instanceID_Stereo;

float offsetF = texelFetchBuffer(I, instance_id_offset).x;

float startPosF = offsetF*4.0;

int startPosInt = int(startPosF);

mat4 modelMatrix = mat4(texelFetchBuffer(M,startPosInt),

texelFetchBuffer(M,startPosInt+1),

texelFetchBuffer(M,startPosInt+2),

texelFetchBuffer(M,startPosInt+3));

vec4 vertPos = vec4(position3, 1.0);

vec4 vertPosWS = modelMatrix * vertPos;

if(leftOrRight < 1){ //Left eye

gl_ViewportIndex = 0;

gl_Position = viewProjMatrixLeft * vertPosWS;

}

else{ //Right eye

gl_ViewportIndex = 1;

gl_Position = viewProjMatrixRight * vertPosWS;

}

}

Listing 2. GLSL vertex shader illustrating stereo instancing combined with conventional
geometry instancing.

7

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Stereoscopic Rendering of Building Information Models (BIM)

Vol. 5, No. 3, 2016
http://jcgt.org

also the number of occlusion tests becomes reduced by a factor of two and the culling
efficiency is only marginally reduced (i.e., an object visible in either viewport will be
scheduled for rendering into both).

In addition, it is straightforward to extend stereo instancing to also support con-
ventional (dynamic) instancing as proposed in [Johansson 2013]. Listing 2 provides
an example vertex shader that generalizes the use of instancing for both geometry
replication as well as stereo-pair generation. For a complete picture of this approach
the reader is referred to the original Johansson paper. Here, a shared array of in-
dices (I) is used to locate each instance’s transformation matrix, encoded in a single,
shared array (M). Without stereo instancing enabled, the index to fetch corresponds
to gl_InstanceID plus a per-geometry type offset (every geometry type gets a cer-
tain offset into I). With stereo instancing enabled, the instance count is increased by a
factor of two, however, the composition of the index array (I) remain unchanged.
First, the modulus operator (%) is used to distinguish between left and right in-
stances, i.e., even numbers go to the left viewport and odd to the right. Second,
the gl_InstanceID+offset is divided by two, and the integer part is used to lookup
and fetch the instance’s transformation matrix (the model matrix is the same for both
the left and right eye). Additionally, the code in Listing 2 takes advantage of the
NV_viewport_array2 extension in order to access multiple viewports in the vertex
shader, thereby removing the need for a screen-space transformation as well as cus-
tom clipping.

3.2. Batching of Non-instanced Geometry

Even with occlusion culling and the instancing-based approaches to reduce the num-
ber of draw calls, certain viewpoints may still require a large number of individual
draw calls. However, many non-instanced objects in a BIM, such as walls, contain
very few triangles, which make them suitable for geometry batching. In the case
of wall objects, the overall low triangle count per object is a result of each wall
segment—straight or curved—being considered a singular object in BIM authoring
systems (i.e. Autodesk Revit or ArchiCAD). As a result, the number of wall objects
represents a significant amount of the total number of objects contained in a BIM
while the number of wall triangles only represents a fraction of the total amount of
triangles in the model.

As BIMs contain detailed information about each individual object (i.e., meta-
data), it becomes trivial to collect and batch wall geometry by material during scene
loading. Although more sophisticated methods could be used to create optimal sets
of wall geometry, they are simply batched by material and the centroid position of the
walls bounding box (i.e., spatial coherence) in order to form clusters of approximately
7500 triangles each.

8

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Stereoscopic Rendering of Building Information Models (BIM)

Vol. 5, No. 3, 2016
http://jcgt.org

4. Performance Evaluation

The different stereo rendering techniques have been implemented in a prototype BIM
viewer and tested on three different BIMs taken from real-world projects (Figure 4).
All three models (dormitory, hotel, and office building) were created in Autodesk Re-
vit 2014 and represent buildings that exist today or are currently being constructed.
Although the hotel model contains some structural elements, they are primarily ar-
chitectural models; as such, no mechanical, electrical, or plumbing (MEP) data is
present. However, all models contain furniture and other interior equipment. In Ta-
ble 1, related statistics for each model are shown. Please note both the large number
of instances as well as small number of triangles per batch for the wall objects, which
motivates the use of hardware-accelerated instancing as well as geometry batching of
wall objects.

All the tests were performed on a laptop equipped with an Intel Core i7-4860HQ
CPU and an Nvidia GeForce GTX 980M GPU with Nvidia graphics driver 361.43 in-

Figure 4. Exterior and interior views of the different test models. From top to bottom:
dormitory, hotel, and office building.

9

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Stereoscopic Rendering of Building Information Models (BIM)

Vol. 5, No. 3, 2016
http://jcgt.org

Dormitory Hotel Office
of triangles (total) 11,737,251 7,200,901 12,454,919
of objects (total) 17,674 41,893 18,635
of batches (total) 34,446 60,955 26,015
of instanced batches / total # of batches 0.60 0.56 0.81
of wall batches / total # of batches 0.38 0.37 0.12
of wall triangles / total # of triangles 0.014 0.04 0.004
Avg. # of triangles per wall batch 12 13 16

Table 1. Model statistics for the three different BIMs.

stalled. The resolution was set to 2364 × 1461 pixels (off-screen buffer) with 4x
multisample antialiasing. All materials use a very simple N dot L diffuse color/tex-
ture shader.

Upon model loading, a bounding volume hierarchy (BVH) is constructed accord-
ing to the surface area heuristics (SAH). Unless otherwise stated, the leaf nodes in
this hierarchy represent the individual building components, such as doors, windows,
and furniture. For each object, one vertex buffer object (VBO) is constructed per ma-
terial., i.e., a typical window object will be represented by two VBOs, one for the
frame geometry and one for the glass geometry.

The implementation of CHC++ is based on the description and accompanying
code presented in [Bittner et al. 2009]. All proposed features of the original algo-
rithm are used, except for the multiqueries and tight bounds optimizations. A major
requirement in order to provide an efficient implementation of CHC++ is the abil-
ity to render axis-aligned bounding boxes with low overhead for the occlusion tests.
Primarily based on OpenGL 2.1, the code in [Bittner et al. 2009] as well as [Johans-
son 2013] uses OpenGL Immediate Mode (i.e., glBegin/glEnd). In the prototype
BIM viewer, a more performance-efficient unit-cube approach is used instead: Every
bounding box in the spatial hierarchy maintains a 4 × 4 transformation matrix that
represents the combined translation and scale that is needed in order to form it from a
unit-cube (i.e., a cube with length 1 centreed in origo). During every querying phase
of the CHC++ algorithm a single VBO, representing the geometry of a unit-cube, is
used to render every individual bounding box. The unique unit-cube transformation
matrix is submitted to the vertex shader as a uniform variable.

For all models, two different camera paths have been used: one interior at a mid-
level floor in each building, and one exterior around each building. The exterior cam-
era paths represent an orbital camera movement around each building while facing
its center. As each building is completely visible throughout the whole animation se-
quence, it serves as a representative worst case scenario, regardless of culling strategy.

For all models and animation paths, several different culling and stereo rendering
configurations have been combined and evaluated. The abbreviations used in the

10

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Stereoscopic Rendering of Building Information Models (BIM)

Vol. 5, No. 3, 2016
http://jcgt.org

tables and figures should be read as follows: VFC for view frustum culling, OC for
occlusion culling, HI for dynamic hardware-accelerated geometry instancing, BW
for batching of wall geometry per material, TP for two-pass stereo rendering, GS
for stereo duplication in the geometry shader, SI for stereo instancing, SI NV for
stereo instancing using the NV_viewport_array2 extension, and BF for brute-force
rendering. In the brute-force rendering case (BF) non-instanced geometry is batched
together based on materials and instanced geometry is rendered using conventional
hardware-accelerated instancing. Also, no occlusion culling is present. As correct
depth ordering becomes difficult to maintain with the use of instancing, HI and BF
render semi-transparent geometry using the weighted average transparency rendering
technique [Bavoil and Myers 2008]. In all other cases, semi-transparent geometry is
rendered after opaque objects in a back-to-front order using alpha blending.

4.1. Stereo Rendering with View Frustum Culling

In Table 2, average and maximum frame times are presented for the different cam-
era paths when view frustum culling is combined with the different stereo rendering
techniques. These results are mainly to illustrate the benefit of using stereo instancing
without any additional acceleration strategies.

With only view frustum culling, these models are primarily CPU-bound due to a
large number of draw calls in relation to the total number of triangle that are being

Stereo Rendering Technique GeForce GTX 980M
(all modes use view frustum culling) Interior Exterior

Dormitory
Two pass (TP) 14.3 / 39.5 51.8 / 68.4

Geometry shader duplication (GS) 12.8 / 26.0 33.7 / 36.7
Stereo instancing (SI) 11.0 / 21.5 27.3 / 34.9

Stereo instancing using NV extension (SI NV) 8.4 / 20.4 25.0 / 34.4
Hotel

Two pass (TP) 53.0 / 82.7 91.9 / 100.8
Geometry shader duplication (GS) 29.1 / 42.0 46.3 / 49.1

Stereo instancing (SI) 29.2 / 42.2 47.1 / 49.9
Stereo instancing using NV extension (SI NV) 28.9 / 41.5 46.2 / 48.9

Office
Two pass (TP) 6.4 / 17.6 39.7 / 52.8

Geometry shader duplication (GS) 7.1 / 17.7 35.8 / 36.5
Stereo instancing (SI) 6.3 / 15.1 29.0 / 30.0

Stereo instancing using NV extension (SI NV) 5.0 / 11.1 20.1 / 22.2

Table 2. Comparison of average/maximum frame time in milliseconds for different render-
ing techniques, models, and camera paths. Numbers in bold represent the lowest numbers
encountered for each test setup.

11

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Stereoscopic Rendering of Building Information Models (BIM)

Vol. 5, No. 3, 2016
http://jcgt.org

drawn (i.e., small batch size). Because of this, stereo instancing becomes a much
more efficient approach. Focusing on the exterior paths, the average frame times are
reduced by 27–52% compared to a two-pass alternative. It also becomes clear that the
NV_viewport_array2 extension is preferable, not only in terms of implementation
simplicity, but also in terms of performance. Although not to such a high degree, a
speed-up is also recorded for the geometry shader-based approach.

Still, even if the stereo instancing technique offers a significant performance in-
crease compared to both a two-pass as well as geometry shader-based approach, the
performance is not enough in order to provide sufficiently high frame rates, even for
the interior walkthroughs. Consequently, to be able to guarantee a smooth, interactive
experience for typical BIMs, additional acceleration techniques are needed.

Stereo Rendering Technique GeForce GTX 980M
(all modes except brute force use occlusion culling) Interior Exterior

Dormitory
Two pass 2.4 / 4.1 7.6 / 10.4

Geometry shader duplication 2.1 / 3.7 6.2 / 9.8
Stereo instancing 2.0 / 3.3 5.4 / 8.1

Stereo instancing (NV extension) 1.9 / 3.3 4.6 / 7.3
Stereo instancing (NV extension) + Instancing + Batching 2.6 / 4.0 5.2 / 7.0

Brute force 10.9 / 15.6 17.4 / 18.2
Hotel

Two pass 4.0 / 5.5 27.6 / 47.9
Geometry shader duplication 3.9 / 5.3 15.0 / 25.9

Stereo instancing 3.5 / 5.1 14.7 / 25.1
Stereo instancing (NV extension) 3.1 / 4.3 14.2 / 24.5

Stereo instancing (NV extension) + Instancing + Batching 3.3 / 4.5 7.5 / 10.9
Brute force 12.0 / 13.9 11.9 / 13.1

Office
Two pass 2.7 / 5.0 11.5 / 19.2

Geometry shader duplication 2.2 / 4.4 8.2 / 14.3
Stereo instancing 2.2 / 4.4 7.0 / 11.8

Stereo instancing (NV extension) 2.1 / 4.0 6.2 / 10.7
Stereo instancing (NV extension) + Instancing + Batching 2.3 / 4.2 6.2 / 9.0

Brute force 10.4 / 14.3 19.2 / 19.8

Table 3. Comparison of average/maximum frame time in milliseconds for different render-
ing techniques, models, and camera paths. Numbers in bold represent the lowest numbers
encountered for each test setup.

12

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Stereoscopic Rendering of Building Information Models (BIM)

Vol. 5, No. 3, 2016
http://jcgt.org

4.2. Stereo Rendering with Occlusion Culling

In Table 3, average and maximum frame times are presented for the different camera
paths when occlusion culling is combined with the different stereo rendering tech-
niques. Focusing on the interior paths first, it becomes clear that occlusion culling
alone is sufficient to provide the required frame rates. In fact, the maximum frame
time recorded for any of the interior paths is never above 6 ms, regardless of stereo
rendering technique. As these models features fairly occluded interior regions, the
CHC++ algorithm can efficiently reduce the amount of geometry that needs to be
rendered.

Still, when inspecting these numbers in more detail, it can be seen that stereo
instancing is able to reduce both average as well as maximum frame times between
20–23% compared to a two-pass approach and 5–21% compared to the geometry
shader-based approach. When occlusion culling and stereo instancing are further
complemented with batching of walls (BW) and geometry instancing (HI), the per-
formance results do not show the same consistency. Although the maximum frame
times are consistently below that of the two-pass approach, stereo instancing is outper-
formed by geometry shader-based duplication for the dormitory model. Nevertheless,
in this context, it is also important to note that it is the batching of walls—and not
the geometry instancing technique—that is the main cause of the increased rendering
time. In fact, the combination of occlusion culling, stereo instancing, and geometry
instancing give equal or actually slightly better performance compared to only using
occlusion culling and stereo instancing for the interior paths. However, batching of
wall geometry was primarily introduced in order to reduce the number of draw calls
for viewpoints when many objects are visible. As such it does not become equally
beneficial for interior viewpoints.

In order to provide a better understanding of the performance characteristics, Fig-
ure 5 presents frame timings for the interior paths for the dormitory and for the office
building. Most notably, these graphs show the huge difference in performance com-
pared to a brute-force alternative (BF), regardless of stereo rendering technique. Al-
though the brute-force approach is able to deliver frame times below 11.1 ms during
parts of the interior camera paths, this level of interactivity cannot be guaranteed.

Focusing instead on the exterior paths in Table 3, the gain of the combined method
becomes even more apparent. With all the techniques activated (OC+SI NV+BW+HI),
the average frame times are reduced by 32–73% compared to the two-pass approach
and 16–50% compared to geometry shader-based duplication. To give a better
overview of the performance behavior, Figure 6 presents frame timings for the exte-
rior camera paths for the three different models. Here it can be seen how the different
techniques complement each other depending on which model is rendered. For the
dormitory and office building models, stereo instancing provides distinct performance
gains compared to both two-pass rendering as well as the geometry shader-based ap-

13

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Stereoscopic Rendering of Building Information Models (BIM)

Vol. 5, No. 3, 2016
http://jcgt.org

Figure 5. Frame times (ms) for the interior path of the dormitory (top) and office (bot-
tom) buildings (BF=Brute force, OC=Occlusion culling, TP=Two-pass stereo rendering,
GS=Geometry shader stereo duplication, SI NV=Stereo instancing using NV extension,
HI=Geometry instancing, BW=Batching of wall geometry).

proach. However, for these models, there is little additional to gain from conventional
geometry instancing, and batching of walls. In fact, due to a high level of occlusion
also in the exterior views of the student model, the average frame times are actually
lower without geometry instancing and batching of walls activated. For the hotel
model, on the other hand, the behavior is somewhat reversed. Although stereo in-
stancing provides huge performance gains compared to two-pass rendering, the frame
times are essentially equal to that of the geometry shader-based technique. Even with
occlusion culling, the exterior views of the hotel model contain a huge number of vis-
ible objects and, therefore, become CPU-bound due to the large number of individual
draw calls. Both stereo instancing as well as geometry shader-based duplication only
address this to a certain degree. In order to reach the target frame rate, the number
of draw calls has to be further reduced, which is exactly what both batching of walls
and geometry instancing does. To better illustrate the individual effects of geome-
try instancing (HI) and batching of walls (BW), Figure 6 (middle) also presents the
frame timings when these two techniques are added separately to occlusion culling

14

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Stereoscopic Rendering of Building Information Models (BIM)

Vol. 5, No. 3, 2016
http://jcgt.org

Figure 6. Frame times (ms) for the exterior path of the dormitory (top), hotel (middle) and of-
fice (bottom) buildings (BF=Brute force, OC=Occlusion culling, TP=Two-pass stereo render-
ing, GS=Geometry shader stereo duplication, SI NV=Stereo instancing using NV extension,
HI=Geometry instancing, BW=Batching of wall geometry)

and stereo instancing (i.e., OC+SI NV+BW and OC+SI NV+HI, respectively). It can
thus be seen that the combination of these two techniques is required in order to reach
a target frame rate of 90 Hz for the hotel model.

Another interesting aspect of the technique is that the brute-force approach is
actually surprisingly close in delivering sufficient rendering performance for the hotel
model. However, as seen from the results from the other two models, the brute-force
alternative is clearly not scalable, especially if we also consider more complex pixel
shaders. In comparison, the proposed combination of query-based occlusion culling,

15

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Stereoscopic Rendering of Building Information Models (BIM)

Vol. 5, No. 3, 2016
http://jcgt.org

stereo instancing, batching of walls, and geometry instancing is able to provide the
required level of performance for all of the tested models.

5. Conclusion

In this paper the stereo instancing rendering technique has been described and further
investigated. The technique is very well suited for integration with occlusion query-
based occlusion culling as well as conventional geometry instancing and has been
shown to outperform traditional two pass stereo rendering approach, geometry shader-
based stereo duplication, as well as brute-force stereo rendering of typical BIMs on
recent hardware. Although occlusion culling alone turned out to provide sufficient
rendering performance for interior rendering of typical BIMs, the combination of
techniques proved vital in order to guarantee required frame rates also for exterior
viewpoints.

References

BAVOIL, L., AND MYERS, K. 2008. Order independent transparency with dual
depth peeling. NVIDIA OpenGL SDK, 1–12. URL: http://developer.

download.nvidia.com/SDK/10/opengl/src/dual_depth_peeling/

doc/DualDepthPeeling.pdf. 11

BITTNER, J., MATTAUSCH, O., AND WIMMER, M. 2009. Game-engine-friendly occlusion
culling. In SHADERX7: Advanced Rendering Techniques, W. Engel, Ed., vol. 7. Charles
River Media, Boston, MA, Mar., ch. 8.3, 637–653. URL: http://www.cg.tuwien.
ac.at/research/publications/2009/BITTNER-2009-GEFOC/. 10

HILLAIRE, S. 2012. Improving performance by reducing calls to the driver. In OpenGL
Insights, P. Cozzi and C. Riccio, Eds. A K Peters/CRC Press 2012, Natick, MA, 353–
364. URL: http://www.crcnetbase.com/doi/abs/10.1201/b12288-30,
doi:10.1201/b12288-30. 3

JOHANSSON, M., ROUPÉ, M., AND BOSCH-SIJTSEMA, P. 2015. Real-time vi-
sualization of building information models (BIM). Automation in Construction
54, 69–82. URL: http://dx.doi.org/10.1016/J.AUTCON.2015.03.018,
doi:10.1016/j.autcon.2015.03.018. 2

JOHANSSON, M. 2013. Integrating occlusion culling and hardware instanc-
ing for efficient real-time rendering of building information models. In GRAPP
2013: Proceedings of the International Conference on Computer Graphics The-
ory and Applications, Barcelona, Spain, 21-24 February, 2013., SciTePress, Lis-
bon, 197–206. URL: http://publications.lib.chalmers.se/records/
fulltext/173349/local_173349.pdf, doi:10.5220/0004302801970206. 2, 6, 8,
10

MARBACH, J. 2009. Gpu acceleration of stereoscopic and multi-view rendering for vir-
tual reality applications. In Proceedings of the 16th ACM Symposium on Virtual Reality

16

http://jcgt.org
http://developer.download.nvidia.com/SDK/10/opengl/src/dual_depth_peeling/doc/DualDepthPeeling.pdf
http://developer.download.nvidia.com/SDK/10/opengl/src/dual_depth_peeling/doc/DualDepthPeeling.pdf
http://developer.download.nvidia.com/SDK/10/opengl/src/dual_depth_peeling/doc/DualDepthPeeling.pdf
http://www.cg.tuwien.ac.at/research/publications/2009/BITTNER-2009-GEFOC/
http://www.cg.tuwien.ac.at/research/publications/2009/BITTNER-2009-GEFOC/
http://www.crcnetbase.com/doi/abs/10.1201/b12288-30
http://dx.doi.org/10.1016/J.AUTCON.2015.03.018
http://publications.lib.chalmers.se/records/fulltext/173349/local_173349.pdf
http://publications.lib.chalmers.se/records/fulltext/173349/local_173349.pdf

Journal of Computer Graphics Techniques
Efficient Stereoscopic Rendering of Building Information Models (BIM)

Vol. 5, No. 3, 2016
http://jcgt.org

Software and Technology, ACM, 103–110. URL: http://dl.acm.org/citation.
cfm?id=1643953, doi:10.1145/1643928.1643953. 3

MATTAUSCH, O., BITTNER, J., AND WIMMER, M. 2008. Chc++: Coherent hierar-
chical culling revisited. Computer Graphics Forum 27, 2, 221–230. URL: http:
//dx.doi.org/10.1111/j.1467-8659.2008.01119.X, doi:10.1111/j.1467-
8659.2008.01119.x. 6

TRAPP, M., AND DÖLLNER, J. 2010. Interactive Rendering to View-Dependent Texture-
Atlases. In Eurographics 2010 - Short Papers, The Eurographics Association, Aire-
la-Ville, Switzerland. URL: http://dx.doi.org/10.2312/EGSH.20101053,
doi:10.2312/egsh.20101053. 4

VLACHOS, A. 2015. Advanced VR rendering. Presentation at Game Developers Con-
ference 2015. URL: http://alex.vlachos.com/graphics/Alex_Vlachos_
Advanced_VR_Rendering_GDC2015.pdf. 2

WILSON, T. 2015. High performance stereo rendering for VR. Presentation at San Diego
Virtual Reality Meetup. URL: https://docs.google.com/presentation/d/
19x9XDjUvkW_9gsfsMQzt3hZbRNziVsoCEHOn4AercAc. 2

Author Contact Information

Mikael Johansson
Department of Civil and Environmental Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
jomi@chalmers.se

Mikael Johansson, Efficient Stereoscopic Rendering of Building Information Models (BIM),
Journal of Computer Graphics Techniques (JCGT), vol. 5, no. 3, 1–17, 2016
http://jcgt.org/published/0005/03/01/

Received: 2015-05-06
Recommended: 2016-03-02 Corresponding Editor: Warren Hunt
Published: 2016-07-25 Editor-in-Chief: Marc Olano

c© 2016 Mikael Johansson (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

17

http://jcgt.org
http://dl.acm.org/citation.cfm?id=1643953
http://dl.acm.org/citation.cfm?id=1643953
http://dx.doi.org/10.1111/j.1467-8659.2008.01119.X
http://dx.doi.org/10.1111/j.1467-8659.2008.01119.X
http://dx.doi.org/10.2312/EGSH.20101053
http://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
http://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
https://docs.google.com/presentation/d/19x9XDjUvkW_9gsfsMQzt3hZbRNziVsoCEHOn4AercAc
https://docs.google.com/presentation/d/19x9XDjUvkW_9gsfsMQzt3hZbRNziVsoCEHOn4AercAc
mailto:jomi@chalmers.se
http://jcgt.org/published/0005/03/01/
http://creativecommons.org/licenses/by-nd/3.0/

	Tom sida
	Tom sida
	Paper 2 - Real-time visualization of building information models (BIM).pdf
	Real-�time visualization of building information models (BIM)
	1. Introduction
	2. Related work
	2.1. BIM and real-time visualization
	2.2. Importance of interactivity and frame rate
	2.3. Acceleration techniques for real-time rendering
	2.3.1. Pipeline optimizations
	2.3.2. LOD
	2.3.3. Visibility culling

	3. Methods and materials
	4. Performance analysis and comparison of existing BIM viewers
	4.1. Detailed analysis of the Solibri Model Viewer
	4.2. Detailed analysis of Navisworks

	5. Development and validation of our prototype BIM viewer
	5.1. Coherent hierarchical culling
	5.2. Implementation
	5.3. Performance evaluation of our prototype BIM viewer

	6. Discussion and conclusions
	References

	Tom sida

 HistoryItem_V1
 TrimAndShift

 Range: From page 115 to page 131
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20160823073558
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 1237
 160

 None
 Up
 42.5197
 0.0000

 Both
 115
 SubDoc
 131

 CurrentAVDoc

 Uniform
 14.1732
 Left

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 114
 131
 130
 17

 1

 HistoryList_V1
 qi2base

